Изменить размер шрифта - +
Он отправил Перельману файл с подробным изложением исправлений своего доказательства. Перельман ответил, что не может открыть его без посторонней помощи ("Я совершенно не умею обращаться с компьютером") и объяснил, что читал статьи Андерсона в распечатках, которые помогла сделать сестра, когда он навещал ее в Реховоте (она училась там в аспирантуре).

Перельман написал, что если Андерсон отправит ему файл в Институт им. Стеклова, то другие смогут его увидеть. Поэтому он может, в конце концов, подождать публикации этой статьи. Другими словами, Перельман получил от контакта с коллегой все, что хотел.

Это письмо — удивительный во многих отношениях документ. Кажется, за пять лет после возвращения из США Перельман далеко отошел от практической стороны дел, даже в математике: он как будто не знал, как пользоваться рабочим компьютером, чтобы попасть в свой университетский электронный почтовый ящик, через который он вел переписку с Андерсоном, или, скажем, как переслать файл так, чтобы его увидел только адресат.

Перельман ловко пресек общение, казавшееся ему ненужным, сославшись на отсутствие навыков работы с компьютером. И все же, когда ему всерьез понадобились препринты Андерсона, он оказался достаточно предприимчивым, чтобы с помощью сестры их добыть. Примечательно также, как легко, между делом Перельман выдает обстоятельства своей жизни и жизни своей семьи. Он никогда их не скрывал, просто эта тема редко имела отношение к разговорам, которые он считал осмысленными.

 

Глава 8. Задача

 

"Самая возможность математического познания кажется неразрешимым противоречием", — более века назад писал Анри Пуанкаре, известный среди математиков как последний универсалист — он преуспел во всех областях математики. Если математические объекты — только плод интуиции, то "откуда у нее [математики] берется та совершенная строгость, которую никто не решается подвергать сомнению"? И если законы формальной логики заменяют в математике эксперимент, то "каким образом математика не сводится к бесконечной тавтологии»? И неужели "возможно допустить, что изложение всех теорем, которые занимают столько томов, есть не что иное, как замаскированный прием говорить, что Л есть Л"?

Согласно Пуанкаре, математика все-таки является наукой, поскольку математические рассуждения предполагают движение от частного к общему. Математик, который строит суждения с достаточной строгостью, может вывести законы, действительные для остального поля его взаимодействия с другими математиками. Иными словами, он не только способен доказать, что Л есть Л, но и объяснить, почему Л — это Л и ничто иное и где мы можем отыскать или построить другие Л.

"Мы все знаем, каково это — быть влюбленными или, например, испытывать боль. Для передачи этой информации нам не нужны строгие определения, — рассуждает американский профессор математики, который после сочинения многочисленных специальных трудов взялся объяснить широкой публике, что такое топология. — Тем не менее математические объекты лежат вне обыденного опыта. Если человек не даст точного определения этих объектов, он не сможет правильно оперировать ими, не сможет говорить о них".

Это может быть так, а может и не быть. На самом деле большинство из нас устраивает небрежность таких понятий, как "длинный" и "короткий" в разговоре о расстоянии, "пологий" и "крутой", — когда речь идет о склоне. В отношении линий, кругов и сфер у нас есть интуитивное чувство, что появление в объекте отверстия иногда (но не всегда) способно изменить свойства объекта. Так, проколотый воздушный шар для нас вовсе не то же самое, что целый шар. Тем не менее пончик с джемом и без дырки представляет для нас фактически то же самое, что пончик с дыркой, с джемом или без. Это часть нашего общего опыта. Но в разобранном на составляющие мире математики использование неустойчивых понятий и неточных координат способно недопустимо исказить картину.

Быстрый переход