Изменить размер шрифта - +
Она (эта величина) интерпретируется как энтропия некоторого канонического ансамбля. Приведены несколько геометрических приложений. Так, (1) поток Риччи на пространстве римановых метрик, рассматриваемых с точностью до диффеоморфизма и масштабирования, не имеет нетривиальных, т.е. отличных от неподвижных точек, периодических орбит;(2) в области, где сингулярности возникают за конечное время, радиус инъективности контролируется кривизной; (3) поток Риччи не может быстро преобразовывать почти евклидову область в сильно искривленную область, вне зависимости от того, что происходит на отдалении. Мы также проверяем несколько утверждений программы доказательства гипотезы геометризации Терстона для замкнутого трехмерного многообразияу предложенной Ричардом Гамильтоном. Мы даем набросок доказательства этой гипотезы, использующего предшествующие результаты о коллапсировании с локальной нижней оценкой кривизны.

С наилучшими пожеланиями Гриша.

Такое письмо получила примерно дюжина американских математиков. Я уже упоминала, что днем ранее Перельман разместил статью на сайте arXiv.org, который принадлежит библиотеке Корнельского университета и создан для быстрого обмена информацией между учеными. Этот текст был первым из трех препринтов, содержащих результаты семилетней войны Перельмана с гипотезой Пуанкаре и гипотезой геометризации.

"Я начал читать статью, — рассказал мне Майкл Андерсон. — Хотя я не специалист по потокам Риччи, мне стало понятно, что Перельман сделал большой шаг вперед, что решение гипотезы геометризации и, следовательно, гипотезы Пуанкаре у меня перед глазами". Каждый, кто получил письмо Перельмана, годами сражался с одной из этих задач. Реакция каждого из них на новости оказалась противоречивой. С одной стороны, если российскому математику в самом деле удалось доказать обе гипотезы, то это грандиозное достижение, вызывающее восторг. С другой стороны, это достижение принадлежит другому и разрушает твою надежду на успех.

Андерсон посвятил доказательству гипотезы геометризации почти десять лет и, как он сказал мне, "погряз в технических деталях. Я продолжал надеяться на какое-то озарение, на прорыв, понимая, что этого не случится. Раз это кто-нибудь сделал, хорошо, что этим человеком оказался

Гриша. Мне он нравился. На следующий день я пригласил его приехать сюда, и, к моему удивлению, еще через день он согласился".

Тем временем американские и европейские топологи начали обмениваться ворохами электронных писем. Майкл Андерсон отправил несколько посланий такого содержания:

Здравствуйте, [имя]/ Надеюсь, у Вас все в порядке.

Не знаю, заметили ли Вы, что Гриша Перельман опубликовал статью о потоках Риччи по адресу: mathDG/0211159. Вы и Ваши коллеги занимаетесь этой проблематикой и, возможно, захотите взглянуть на этот текст. Гриша — очень необычный и очень способный человек. Я встретил его около девяти лет назад. В начале 1990-х мы много говорили о потоках Риччи и гипотезе геометризации трехмерных многообразий. Вчера, как гром среди ясного неба, от него пришло электронное письмо, в котором он сообщил о публикации своего препринта.

Я знаю о потоках Риччи недостаточно, однако мне кажется, что Гриша в своей статье решил многие фундаментальные задачи, которые прежде не мог решить никто. Похоже, что он вплотную приблизился к достижению цели, поставленной Гамильтоном, то есть доказательству гипотезы геометризации Терстона. Идеи кажутся мне новыми и очень оригинальными. Это очень похоже на Гришу. Он решил несколько неординарных задач в других областях математики в начале 1990-х, а после исчез из виду. Теперь, видимо, он вернулся.

Так или иначе, я хочу известить Вас об этом, а также попросить держать меня в курсе дискуссий (слухов) по поводу работы Перельмана. Разумеется, я хотел бы знать, насколько он близок к доказательству гипотезы Терстона (это касается и моей работы). Думаю, что статья Перельмана верна — я могу предположить это, поскольку знаю Гришу.

Быстрый переход