Подобное объединение становится возможным, только если все частицы находятся в одном и том же, самом низкоэнергетическом из всех возможных состояний. Вы, возможно, уже догадались, что произойдет дальше: довольно скоро все частицы окажутся в одном и том же квантовом состоянии, объединившись в своеобразный когерентный конденсат.
А дальше происходит следующее. Поскольку каждое квантовое состояние системы характеризуется собственным дискретным значением энергии, то после того, как все частицы окажутся в одном и том же квантовом состоянии, энергия этого состояния при определенных обстоятельствах может оказаться гораздо меньшей, чем энергия состояния, в котором все частицы объединены, а одна свободна. Этот энергетический разрыв, или, как его называют, потенциальный барьер между двумя ближайшими состояниями системы, может быть очень большим. Именно в такой ситуации и возникает сверхпроводимость.
Несмотря на то что каждый электрон заряжен отрицательно и между электронами действует сила электростатического отталкивания, внутри кристаллической решетки на электроны действует также и сила притяжения со стороны атомных ядер, которая не дает электронам вылететь из кристалла. При низкой температуре, когда энергия теплового движения электронов очень мала по сравнению с энергией связи кристаллической решетки, электроны начинают объединяться в пары, которые, в свою очередь, образуют единый когерентный электронный конденсат. Если теперь подать на кристалл разность потенциалов, то есть подключить его к электрической батарее, электронный конденсат начнет двигаться как единое целое. Если любой из электронов сталкивается с препятствием, то энергия, необходимая, чтобы остановить этот электрон, то есть выбить его из когерентного ансамбля, оказывается гораздо больше энергии этого электрона. Электрон не в состоянии преодолеть потенциальный барьер и выскочить из ансамбля, поэтому он вынужден продолжать движение вместе со всеми остальными электронами. Таким образом, все электроны синхронно перемещаются в одном направлении, а кристаллическая решетка не оказывает их движению никакого сопротивления.
На основании описанного поведения электронного конденсата можно попытаться сделать ряд предсказаний относительно свойств сверхпроводящих материалов. Одно из таких свойств носит название эффекта Мейснера. Немецкий физик Вальтер Мейснер обнаружил его в 1933 году. Суть эффекта заключается в том, что если поместить сверхпроводник рядом с магнитом, то сверхпроводник будет прилагать все усилия, чтобы не пустить внутрь себя магнитное поле. Это происходит вследствие того, что электроны в сверхпроводнике, не встречая никакого сопротивления, перемещаются под действием магнитного поля так, чтобы создаваемое в результате их движения собственное магнитное поле полностью компенсировало внешнее. Фактически собственное магнитное поле присутствует только на поверхности сверхпроводника и имеет такую конфигурацию, чтобы суммарное поле внутри кристалла оставалось равным нулю.
Таким образом, если поднести к сверхпроводнику магнит, сверхпроводник сформирует у себя на поверхности магнитное поле, являющееся точным отражением магнитного поля подносимого магнита. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «увидит» магнит одинаковой полярности и точно такого же размера. Если магнит повернут к сверхпроводнику, например, северным полюсом, то его отражение тоже будет повернуто к магниту северным полюсом. На этом эффекте основан замечательный демонстрационный опыт: на кусок вещества кладется магнит, затем вещество охлаждается до сверхпроводящего состояния, и магнит начинает отталкиваться от сверхпроводника и воспаряет над ним подобно гробу Магомета.
Существует еще один способ описания этого явления. Свет, как я уже отмечал ранее, представляет собой нечто иное, как электромагнитные волны. Покачивание заряда или периодическое изменение электрического или магнитного полей порождает электромагнитные волны. Электромагнитные волны распространяются со скоростью света, потому что этого требуют законы электромагнетизма, но именно по этой причине, несмотря на то, что электромагнитная волна может переносить энергию, с ней невозможно связать никакую массу. |