Экзотический язык калибровочной симметрии можно было бы рассматривать лишь как дань математической педантичности, если бы он использовался только для описания уже установленных фактов. В конце концов, законы гравитации и электромагнетизма были изучены задолго до открытия калибровочной симметрии. Но оказалось, что эта симметрия очень важна для дальнейшего развития физики. В течение последних десятилетий мы обнаружили, что все известные силы в природе являются результатом калибровочных симметрии. Это, в свою очередь, дало нам новое понимание многих вещей, казавшихся раньше непонятными. Обнаружение калибровочных симметрии, связанных с фундаментальными взаимодействиями, позволило физикам установить физические величины, ответственные за эти взаимодействия.
Общим свойством калибровочной симметрии является требование существования неких полей, способных действовать на больших расстояниях, которые бы «компенсировали» свободу выбора некоторых свойств частиц или пространства-времени так, чтобы при этом не изменялись основные физические законы. В общей теории относительности таким полем является гравитационное, в электромагнетизме — электромагнитное, которое, в свою очередь, определяется векторными потенциалами. Однако слабое взаимодействие между частицами в атомных ядрах действует только на очень коротких расстояниях. Как же оно может быть связано с калибровочной симметрией?
Решением является спонтанное нарушение симметрии. Тот же самый фон виртуальных частиц в пустом пространстве, который заставляет Z бозоны проявлять свойства массивных частиц, а фотоны оставляет безмассовыми, может физически реагировать на слабый заряд частицы, то есть на заряд, который позволяет частице участвовать в слабом взаимодействии. По этой причине слабый заряд не может быть произвольно изменен локально. Если бы, например, во всем пространстве существовало фоновое электрическое поле, мы не могли бы произвольно заменить положительный заряд отрицательным, потому что действующие на них со стороны фонового поля силы были бы направлены в противоположные стороны, и симметрия между положительным и отрицательным электрическим зарядами оказалась бы скрыта этим фоновым электрическим полем.
Так вот, спонтанно нарушенные калибровочные симметрии полностью скрыты от нас. Как я уже говорил, фоновый конденсат виртуальных частиц в пустом пространстве приводит к тому, что W и Z бозоны обретают массу, а фотоны остаются безмассовыми. Проявление нарушенной калибровочной симметрии заключается в существовании массивных частиц, которые являются переносчиками короткодействующих взаимодействий. Открытие нарушения фундаментальных симметрии позволило по-новому взглянуть на короткодействующие взаимодействия и изучить их сходство с дальнодействующими взаимодействиями — гравитационным и электромагнитным. Это в эвристическом смысле позволило посмотреть на теорию слабого взаимодействия как на кузину квантовой электродинамики, и тогда Фейнман и Мюррей Гелл-Манн разработали феноменологическую теорию, в которой слабое взаимодействие было представлено в той же форме, что и электромагнитное, и изучили ее следствия. За следующее десятилетие им удалось построить теорию, объединяющую оба взаимодействия. Одним из главных предсказаний новой теории было не наблюдавшееся ранее свойство слабого взаимодействия. В отличие от уже известного процесса, при котором нейтральный нейтрон распадается на две заряженные частицы — положительный протон и отрицательный электрон, теория предсказывала и процесс, при котором не происходило никаких изменений заряда, подобно тому, как электромагнитная теория предсказывает взаимодействие двух электронов без изменения их зарядов. Это «нейтральное взаимодействие» было экспериментально обнаружено в 1970-х годах. Возможно, это был первый случай обнаружения симметрии, которая предсказала существование нового взаимодействия, а не объяснила его задним числом.
Слабость слабого взаимодействия объясняется тем, что связанная с ним калибровочная симметрия спонтанно нарушается. |