Одна из стратегий Энн: «Выбрать “стоп”, а если Боб выберет 1, выбрать “вниз”».
В более сложных играх, таких как шахматы, где есть длинные последовательности ходов с большим количеством вариантов выбора в каждой, описание стратегий усложняется; мы обсудим данный аспект более подробно далее в этой главе. Однако общий принцип построения стратегий достаточно прост, за исключением одной особенности. Если Энн выберет «вперед» на первом ходе, она так и не получит шанса сделать второй ход. Следует ли в стратегии, согласно которой она выбирает «вперед», указывать то, что Энн сделала бы в гипотетическом случае, если бы каким-то образом оказалась в узле своего второго действия? Возможно, ваша интуиция скажет «нет», но формальная теория игр говорит «да» по двум причинам.
Во-первых, выбор Энн варианта «вперед» в качестве первого хода может зависеть от ее рассуждений о том, что ей пришлось бы сделать на втором ходе, если бы она изначально предпочла вариант «стоп». Например, тогда Боб мог бы выбрать 1, и Энн получила бы второй ход, а ее лучшим выбором стал бы вариант «вверх», обеспечивающий ей выигрыш 2. Если Энн для первого хода выберет «вперед», Крис выберет вариант «безопасно» (поскольку его выигрыш 3 в случае варианта «безопасно» больше, чем ожидаемый выигрыш от варианта «рискованно»), и такой исход игры обеспечит Энн выигрыш 3. Для того чтобы процесс размышлений был понятнее, можно сформулировать стратегию Энн так: «Выбрать “вперед” на первом ходе и выбрать “вверх”, если появится возможность походить еще раз».
Вторая причина для такого, казалось бы, педантичного описания стратегий имеет отношение к устойчивости равновесия. При анализе устойчивости мы спрашиваем, что бы произошло, если бы выбор игроков был подвержен влиянию небольших помех, среди которых и мелкие ошибки самих игроков. Скажем, если бы выбор нужно было делать посредством нажатия клавиши, не исключено, что у Энн дрогнула бы рука и она случайно вместо клавиши «вперед» нажала бы клавишу «стоп». Исходя из этого, важно определить, как Энн будет действовать, обнаружив ошибку, поскольку Боб выберет 1 и наступит очередь Энн делать следующий ход. На более продвинутых уровнях теории игр анализ устойчивости обязателен, поэтому мы хотим подготовить вас заранее, настаивая на том, чтобы вы изначально формулировали свои стратегии в виде исчерпывающих планов действий.
Теперь подытожим общие концепции, проиллюстрированные деревом, представленным на . Дерево игры состоит из узлов и ветвей. Узлы соединены между собой ветвями и бывают двух типов. Узел первого типа обозначается термином «узел принятия решений». Каждый такой узел соответствует игроку, который выбирает в нем действие. Каждое дерево имеет один узел принятия решений — это начальный узел дерева, отправная точка игры. Узел второго типа называется «концевой узел». Каждому концевому узлу соответствует совокупность исходов игры для ее участников; эти исходы представляют собой выигрыши, полученные каждым игроком, если игра проходила по ветвям, приведшим к данному концевому узлу.
Ветви дерева игры представляют действия, которые можно предпринять из любого узла принятия решений. Каждая ветвь на дереве ведет от узла принятия решений либо к другому узлу принятия решений (как правило, другого игрока), либо к концевому узлу. В дереве должны учитываться все допустимые варианты действий, которые игрок может выбрать в каждом узле, поэтому некоторые деревья включают также ветви, соответствующие варианту «ничего не делать». Из каждого узла принятия решений должна исходить как минимум одна ветвь, но ограничений на количество ветвей нет. При этом к каждому узлу принятия решений может вести только одна ветвь. |