Изменить размер шрифта - +
Постанов ка максимально подробных граничных условий, но тоже в общем виде.

2. Самое подробное отслеживание последовательности процесса, куда вовлечены рассматриваемые элементы.

3. Сравнение всех этапов процесса по п. 2 с набором физических законов или явлений и оценка положительных и отрицательных последствий; построение алгоритма процесса.

4. Внесение в алгоритм процесса граничных условий и реальных определений процессов и явлений, что автоматически приводит к появлению дерева возможных решений. Только на этом этапе человек-заказчик выбирает один или несколько вариантов решения.

5. Наиболее важным и интересным является то, что отрицательный результат при подобном подходе к решению проблемы также является новым техническим решением.

Так, например, неудачно спроектированный охлаждающий вентилятор становится нагревателем с уникальным набором свойств (наподобие аэрогриля) или устройством для термической обработки металлов (при Т = 800˚С) в неизменной атмосфере инертных газов или в их специальной смеси.

Вышеуказанный метод позволил создать программы для ЭВМ, которые разрабатывают варианты устройств и технологий на основе всего комплекса знаний о физическом мире методом перебора и отбраковывания по критерию несоответствия физическим законам или иным заданным параметрам. Информация о решениях выдается в любом удобном для пользователя виде. При этом гарантируется перебор всех возможных вариантов, что для человека-изобретателя просто неосуществимо. Это пример удачного сочетания аналогового и цифрового моделирования и получения конечного результата в области так называемой творческо-эвристической деятельности, которая ранее считалась посильной только для человеческого мозга. Сам по себе этот пример может стать основой аналогии между различными способами осознания действительности и более точного определения понятия «разум» и путей его развития. На основе частичного использования вышеуказанного метода можно сделать некоторые прогнозы основных направлений науки и технологий, где в ближайшее время следует ожидать наиболее эффективных решений.

Анализируя развитие науки в человеческих сообществах, можно отметить, что военное, экономическое и политическое преимущества всегда имеют государства, где передовые для своего времени техника, технологии, информационное обеспечение, основанное на научной базе — системе обучения, подборе кадров и поддержке научных учреждений. Потеря этих приоритетов для любой государственной структуры заканчивается катастрофой!

В области транспорта при создании колеса была интуитивно решена чисто полевая задача — передвижение груза по эквипотенциальной поверхности гравитационного поля. Перевозки по воде — это просто прямое использование данного принципа. Следующим этапом должно стать использование поля иной физической природы для поддержания груза на удалении от опорной поверхности (земли) и создание горизонтального движения за счет изменения градиента поля.

В области энергетики перспективными являются накопление рассеянной энергии полей (в основном холодного ядерного синтеза электромагнитной структуры) и передача ее без потерь на основе резонансных систем (точки пучности поля обладают рядом интересных свойств, но пока этот вопрос мало изучен). Также существуют известные, но слабо используемые технологии типа солнечных батарей. Например, было подсчитано, что для обеспечения электроэнергией всего СССР требуется поле солнечных батарей площадью 10 000 км<sup>2</sup> (100 х 100 км), размещенное на широте Ташкента. В новых условиях существования России нам требуется несколько больше — примерно 30 000 км<sup>2</sup> солнечных батарей, размещенных блоками по всей территории страны и соединенных в единую энергосистему. Однако о таком решении никто не думает (как в России, так и в мире в целом), потому что это грозит коренной перестройкой всего топливно-энергетического комплекса, резким сокращением количества рабочих мест и, главное, потерей прибылей условными нефтегазоугольными «королями».

Быстрый переход