Изменить размер шрифта - +
 – Мы сможем, например, совершенно точно определить степень вероятности по интересующему вас вопросу…

Ивану Петровичу захотелось свистнуть, но другой преподаватель поправил своего товарища:

– Мы скажем вам приблизительное число билетов, которое нужно было иметь для того или иного количества выигрышей.

– Вот это ближе к делу, – воспрянул Иван Петрович.

– Вероятность все-таки останется вероятностью…

– Вот это плохо… – сразу огорчился Упоров.

– Почему? – спросил Стихин.

– Да потому, что опять ничего определенного.

– Самое обидное утверждение для математиков, между прочим, – улыбнулся Стихин. – Математика – очень конкретная наука. Я приведу вам пример, о котором пишет в своей книге «Математическая статистика в технике» очень эрудированный математик Длин. Случай этот Длин взял из воспоминаний известного французского философа Дидро. Однажды в Неаполе какой-то уроженец Базиликота в присутствии аббата Галиани встряхнул три кости в стаканчике и держал пари, что выбросит три шестерки, и действительно все три кости выпали шестерками.

– Это невозможно, – раздались тогда голоса.

Но игрок бросил кости во второй раз, и зрители увидели то же самое. Так он проделывал несколько раз подряд, и неизменно появлялись три шестерки.

– Черт побери! – воскликнул тогда аббат. – Кости фальшивые!

И они действительно оказались фальшивыми.

– Весьма убедительно, – сказал Иван Петрович. – А что, тот аббат был математиком?..

– Во всяком случае образованным человеком. А в то время образованные люди математику знали обязательно…

– И он понимал, – сказал уже другой преподаватель, – что если один выигрыш еще вероятен, то пять подобных невероятны. Грубо говоря, здесь речь ведется как раз о степени вероятности. Что касается математики, то для подобных обстоятельств в ней есть даже конкретная формула.

– Теорема Лапласа?

– Да. Она, пожалуй, самая подходящая… Разговор вели между собой уже математики. Но Иван Петрович все-таки вмешался:

– Там кости, товарищи, а у меня государственные лотерейные билеты. В костях еще и поднатореть можно…

– Тем более! И все-таки, как видите, выигрыш в такой степени был невероятен!..

– Да… – протянул в задумчивости Иван Петрович.

– Вас, видимо, этот пример не убеждает?..

– Как вам лучше объяснить мою точку зрения? – Иван Петрович упорно добивался своего. – Вот послушайте, теперь я вам случай расскажу, не из книги, а из жизни… В позапрошлую осень возвращались мы с Кожакуля, подсел к нам в машину один из местных рыбаков…

И Упоров повторил историю о старухе, за один год выигравшей два мотоцикла.

– Все правильно! – ответили ему почти хором.

– Как же так?..

– Так ведь она выигрывала по билетам разных выпусков.

– Так точно.

– Вот если бы она выиграла оба мотоцикла на три взятых лотерейных билета одного выпуска…

– Это было бы равносильно тому, что на один билет выпало два выигрыша, – сказал Стихин.

– Кругом шестнадцать получается! – подивился Упоров.

– А хотите еще один пример, который дает прямое представление по вашему делу? – спросил Егорычев.

– Что за вопрос…

– Представьте себе шар радиусом, равным расстоянию от Земли до Солнца…

– Представляю, – смело заявил Иван Петрович, хотя в душе и подумал, что математики все-таки чудаки, хоть и симпатичные.

Быстрый переход