Изменить размер шрифта - +
Он имеет прямое действие. В фильме «Секреты Лос-Анджелеса» сержант Эд Эксли обещает Лерою Фонтейну, одному из подозреваемых, что если он согласится стать государственным свидетелем, то получит более мягкий приговор, чем два других подозреваемых, Рэй Коутс и Тайрон Джонс. Но Лерой знает, что, когда он выйдет из тюрьмы, его могут ждать на свободе друзья этих двоих!

Наказание, которое в данном контексте выглядит более естественным, оказывается возможным в связи с тем, что большинство подобных игр представляют собой часть непрерывного взаимодействия. Обман может обеспечить одному игроку краткосрочное преимущество, но навредит его взаимоотношениям с другим игроком и в долгосрочной перспективе обойдется гораздо дороже. Если цена достаточно велика, именно это может удержать игрока от обмана.

Наглядный пример такой ситуации предоставляет бейсбол. В Американской бейсбольной лиге питчеры попадают мячом в бэттеров на 11–17 процентов чаще, чем в Национальной бейсбольной лиге. По мнению профессоров Университета Юга в Суони Дага Драйнена и Джона-Чарльза Брэдбери, это обусловлено правилом о назначенном хиттере. В Американской бейсбольной лиге питчеры не бьющие игроки. Следовательно, питчер Американской лиги, который попадает мячом в бэттера, может не бояться ответных действий со стороны питчера команды-соперника. Вероятность того, что мяч попадет в питчера, совсем небольшая, но она повышается в четыре раза, если он попал в кого-то в предыдущей половине иннинга. В таком случае страх получить ответный удар очевиден. Первоклассный питчер Курт Шиллинг объяснил это так: «Вы на самом деле готовы бросить в кого-то мяч, если играете против Рэнди Джонсона?».

В ситуации, когда один игрок наказывает другого за обман, действует стратегия «око за око, зуб за зуб». Эта стратегия оказалась настоящим открытием, сделанным в ходе самого известного эксперимента с дилеммой заключенных. В следующем разделе вы узнаете об этом эксперименте и его уроках.

 

Стратегия равноценных ответных действий

 

В начале 1980-х годов политолог Мичиганского университета Роберт Аксельрод предложил специалистам по теории игр со всего мира разработать стратегии решения дилеммы заключенных в виде компьютерных программ. Они были распределены по парам, каждая из которых разыгрывала дилемму заключенных 150 раз. На основании набранных очков составили рейтинг программ, принимавших участие в турнире.

Победителем стал профессор математики университета в Торонто Анатолий Рапопорт. Его выигрышная стратегия оказалась одной из самых простых: «око за око, зуб за зуб». Для Роберта Аксельрода этот результат явился большой неожиданностью, поэтому он решил провести еще один турнир, увеличив число участников. Рапопорт и в этот раз подал программу, основанную на той же стратегии, – и снова победил.

Стратегия равноценных ответных действий – один из вариантов правила поведения «поступайте с другими так, как они поступают с вами». Если говорить более точно, эта стратегия подразумевает сотрудничество на первом этапе, после чего повторяются действия, которые предпринял соперник на предыдущем этапе.

По мнению Роберта Аксельрода, стратегия равноценных ответных действий опирается на четыре принципа, которые должны присутствовать в любой эффективной стратегии для повторяющейся дилеммы заключенных: понятность, доброжелательность, возмездие и прощение. Стратегия равноценных ответных действий очень проста и понятна: сопернику нет необходимости долго размышлять над вашим следующим ходом или просчитывать его. В основе такой стратегии лежит доброжелательность: она никогда не инициирует обман. В этой стратегии есть элемент возмездия: она не оставляет обман безнаказанным. Кроме того, эта стратегия стимулирует прощение: участники игры не держат зла друг на друга слишком долго и готовы возобновить сотрудничество.

Одна из самых впечатляющих характеристик стратегии равноценных ответных действий состоит в том, что она показала лучшие результаты по итогам всего турнира, хотя и не победила (и не могла победить) ни одну из конкурирующих стратегий в прямом противостоянии с ними.

Быстрый переход