Изменить размер шрифта - +
Хотя каждый игрок ждет момента, когда удастся воспользоваться порядочностью другого, этот взаимный обман приносит пользу им обоим.

В ходе некоторых экспериментов вместо распределения испытуемых по парам и проведения серии игр с дилеммой заключенных организуется большая игра с участием всей группы. Мы хотим привести здесь особенно интересный и поучительный пример. Профессор Реймонд Батталио из Техасского сельскохозяйственно-машиностроительного университета организовал следующую игру с участием 27 студентов. Все студенты, якобы владельцы гипотетических компаний, должны были решить (одновременно и независимо друг от друга, написав свое решение на листике бумаги), какой объем продукции будет выпускать их компании: 1, который поможет сохранить совокупное предложение на низком уровне, а цены – на высоком, или 2, который позволит получить дополнительный доход за счет других. В зависимости от числа студентов, которые выберут объем продукции 1, деньги будут выплачены им по следующей схеме:

 

На графике эта схема представлена в наглядном виде.

 

Игра построена таким образом, чтобы студенты, выбравшие 2 («предать»), всегда получали на 50 центов больше, чем студенты, выбравшие 1 («сотрудничать»), но чем больше студентов выбирают 2, тем меньше их совокупный выигрыш. Предположим, все 27 студентов начинают с выбора 1; в таком случае каждый из них получит по 1,08 доллара. А теперь представьте себе, что один из них переключается на вариант 2. В игре остается 26 студентов, выбравших 1; каждый из них получит по 1,04 доллара (на 4 цента меньше, чем по первоначальному плану), но студент, изменивший стратегию, получит 1,54 доллара (на 46 центов больше). Такое распределение выигрыша не зависит от первоначального числа студентов, намеревающихся выбрать 1, а не 2. В данном случае вариант 2 – это доминирующая стратегия. Каждый студент, который переключается со стратегии 1 на стратегию 2, увеличивает свой выигрыш на 46 центов, но в то же время сокращает выигрыш каждого из оставшихся 26 участников игры на 4 цента. Когда все участники игры начнут действовать эгоистично, пытаясь получить максимальный выигрыш, каждый из них получит по 50 центов. Если бы они могли успешно объединить свои усилия и выбрать такой образ действий, который свел бы их общий выигрыш к минимуму, каждый из них получил бы по 1,08 доллара. А как вы сыграли бы в эту игру?

Когда эта игра проводилась на практике (один раз без обсуждения в группе, другой раз с обсуждением, для того чтобы выработать согласованные действия), число студентов, которые были готовы сотрудничать и выбрали вариант 1, колебалось от 3 до 14. В последней игре, в которой студенты объединили свои усилия, их было 4. Совокупный выигрыш составил 15,82 доллара, что было на 13,34 доллара меньше, чем в том раунде игры, в котором студентам удалось договориться. «Я больше никогда в жизни не стану никому доверять!» – недовольно пробормотал студент, который больше всех выступал за согласованные действия. Но каким был его выбор? «Ну, я выбрал 2», – сказал он. Йоссариан понял бы его.

В современных экспериментах с играми в дилемму заключенных с несколькими участниками используется вариант, получивший название «игра со взносами в общий фонд». Каждому игроку предоставляется некая начальная сумма, скажем, 10 долларов. После этого он решает, какую часть этой суммы оставит себе и какую отдаст в общий фонд. Затем экспериментатор удваивает сумму, накопившуюся в общем фонде, и делит ее поровну между всеми участниками игры (как теми, которые сделали взнос в общий фонд, так и теми, которые оставили всю сумму себе).

Предположим, в группу входят четыре игрока: А, Б, В и Г. Независимо от действий других игроков, если А решит внести 1 доллар в общий фонд, после удваивания сумма в общем фонде увеличится на 2 доллара. Но 1,5 доллара достанется при этом игрокам Б, В и Г; сам игрок А получит всего 50 центов.

Быстрый переход