Изменить размер шрифта - +
Явным выбором станет 1. Теперь постепенно перемещайте точку вокруг единичной окружности и по мере движения выбирайте для каждого положения точки тот из квадратных корней, который меняется непрерывно. К тому моменту, когда вы пройдете половину окружности до –1, квадратный корень пройдет лишь четверть окружности, до + i, поскольку √–1 = + i или – i. Продолжая путь по кругу, мы вернемся в исходную точку 1. Но квадратный корень, двигающийся с половинной скоростью, остановится только у –1. Чтобы вернуть его к исходному значению, точке придется пройти окружность полностью дважды.

Риман нашел способ справиться с такой разновидностью сингулярности: он удвоил сферу Римана до двух слоев. Они отделены друг от друга, за исключением точек 0 и ∞ – второй точки ветвления. В них слои сливаются – или, наоборот, разветвляются от одиночного слоя при 0 и ∞. Возле двух этих особых точек геометрия слоев выглядит как винтовая лестница: необычно то, что если вы подниметесь на два полных оборота по этой лестнице, то окажетесь там, откуда начали. Геометрия этой поверхности говорит нам очень многое о функции квадратного корня, и та же идея остается верной для других комплексных функций.

 

Сфера

 

Тор

 

Тор с двумя отверстиями

 

Описание поверхности смутное, и возникает вопрос: что у нее за форма? Вот здесь и вступает в игру топология. Мы можем непрерывно деформировать винтовую лестницу во что-то более легкое для визуализации. Специалисты по комплексному анализу открыли, что топологически всякая поверхность Римана является либо сферой, либо тором, либо тором с двумя отверстиями, либо тором с тремя отверстиями и т. д. Число отверстий g известно как род поверхности, и это то же g, которое встречалось нам в обобщенной формуле Эйлера для поверхностей.

 

Ориентируемые поверхности

 

Понятие рода оказалось важным для многих глубинных вопросов в комплексном анализе, что вынудило ученых обратить внимание на топологию поверхностей. Постепенно стало ясно, что существует второй класс поверхностей, отличных от торов с g отверстиями, но тесно с ними связанный. Отличие в том, что торы с g отверстиями – ориентируемые поверхности; интуитивно это означает, что они имеют две четко различающиеся стороны. Они наследуют это свойство от комплексной плоскости, имеющей верхнюю и нижнюю стороны, поскольку винтовые лестницы соединяются так, что это различие сохраняется. Если вместо этого вы соедините два лестничных пролета так, чтобы пол одного из них повернулся вверх, то стороны, ранее бывшие раздельными, соединятся.

О возможности соединения такого рода первым заговорил Мёбиус, чья лента имела одну сторону и один край. Клейн пошел дальше, концептуально склеив в круглый диск края ленты Мёбиуса, чтобы избавиться от края. Получившаяся поверхность, в шутку прозванная бутылкой Клейна, имеет только одну сторону и вовсе не имеет краев. Если мы попытаемся изобразить ее в привычном трехмерном пространстве, ей придется пройти себя насквозь. Но в качестве абстрактной поверхности (или поверхности, помещенной в четырехмерное пространство) она не пронзит себя.

Теперь теорему о торах с g отверстиями можно переформулировать так: любая ориентируемая поверхность (или конечное пространство без границ) топологически эквивалента сфере с g дополнительными отверстиями (где g может быть равно 0). Есть соответствующая классификация и для неориентируемых (односторонних) поверхностей: они могут быть образованы поверхностью под названием проективная плоскость путем добавления g отверстий. Бутылка Клейна как раз и является проективной поверхностью с одним отверстием.

Комбинация этих двух результатов называется теоремой о классификации поверхностей. Она позволяет описать в топологическом эквиваленте любую возможную поверхность (или конечное пространство без границ).

Быстрый переход