Изменить размер шрифта - +
С доказательством этой теоремы топология двумерных пространств – поверхностей – может считаться вполне изученной. Это, конечно, не значит, что на любой вопрос о поверхностях теперь легко найти ответ, но по крайней мере это дает хороший задел для исследований новых сложных проблем. В любом случае, теорема о классификации поверхностей – чрезвычайно важный инструмент двумерной топологии.

 

Бутылка Клейна. Видимое самопересечение – не более чем иллюзия, возникающая из-за трехмерности изображения

 

ЖЮЛЬ-АНРИ ПУАНКАРЕ 1854–1912

Анри Пуанкаре родился во французском Нанси. Его отец Леон был профессором медицины в Университете Нанси, его мать звали Эжени Лануа. Его кузен, Раймон Пуанкаре, стал французским премьер-министром и даже занимал пост президента страны во время Первой мировой войны. Анри отлично успевал по всем предметам в школе, особенно выделяясь в математике. Прекрасная память и способность легко представить себе объемное изображение даже самой сложной формы помогали компенсировать его слабое зрение: ученик едва различал классную доску, не говоря уж о том, что на ней было написано.

Его первой должностью был пост преподавателя в университете города Кан в 1879 г., но уже в 1881 г. он удостоился гораздо более денежного и престижного места в Парижском университете. Там он стал одним из ведущих математиков своего времени. Он работал систематически – каждый день по четыре часа, разбитых на два двухчасовых промежутка, утром и вечером. Но полет его мысли не поддавался столь строгой организации, и зачастую он принимался писать статью, не имея даже представления о том, к чему приведет его новое исследование и как оно закончится. Его отличала высочайшая интуиция, и лучшие идеи приходили часто в те моменты, когда он размышлял о чем-то постороннем.

Среди своих современников он, несомненно, был самым выдающимся математиком, сделавшим немало важных открытий в теории комплексного переменного, дифференциальных уравнений, неевклидовой геометрии и топологии – которую отчасти и создал. Он много занимался прикладными исследованиями в области электричества, сопротивления материалов, оптики, термодинамики, теории относительности, квантовой теории, астрономии и космологии.

Он завоевал главный приз в конкурсе, объявленном в 1887 г. королем Швеции и Норвегии Оскаром II. Темой была объявлена «задача трех тел» – исследование движения гравитационно взаимодействующих трех тел. В поданную на конкурс работу закралась ошибка, которую удалось быстро исправить. В результате были открыты возможности того, что сейчас известно под названием «хаос»: беспорядочное, непредсказуемое движение в системе, подчиняющейся детерминированным законам. Также он опубликовал несколько чрезвычайно популярных и известных книг: «Наука и гипотеза» (1901), «Ценность науки» (1905), «Наука и метод» (1908).

Тем, кто хочет научиться мыслить в понятиях топологии, часто помогает представление об изучаемом пространстве как о единственном существующем предмете. Вовсе ни к чему пытаться вписать его в окружающее пространство. Это позволяет полностью сосредоточиться на внутренних свойствах пространства. Представьте на минуту мелкое существо, обитающее, так сказать, на топологической поверхности. Как может такая козявка, не имея представления обо всем окружающем ее пространстве, пытаться понять, на чем она обитает? Как прикажете ей давать характеристики такой поверхности «изнутри»? К 1990 г. стало ясно, что единственный способ ответить на этот вопрос – представить существование на этой поверхности замкнутых петель и способы их деформации. Например, на сфере любая замкнутая петля может непрерывно деформироваться до точки – стянувшись в нее. Окружность, вращающаяся вокруг экватора, может постепенно смещаться к северному полюсу, делаясь всё меньше, пока не совпадет с самим полюсом.

Быстрый переход