Изменить размер шрифта - +
Риман не сдавался, и наблюдения за взаимодействием электрических и магнитных сил привели его к новой концепции силы, основанной на геометрии. На него снизошло такое же озарение, благодаря какому десятилетия спустя Эйнштейн открыл общую теорию относительности: силу может заменить искривление пространства.

В традиционной механике тела движутся по прямой, пока не подвергнутся воздействию силы. В криволинейных геометриях существование прямых вовсе не обязательно, а пути изогнуты. Если пространство искривлено, то, вынужденно отклоняясь от прямой линии, тело испытает не что иное, как силу. Теперь благодаря этому озарению Риман почувствовал себя вполне готовым к публичной лекции. Он прочел ее в 1854 г. Это был великий триумф. Идеи Римана быстро распространились, и восхищение его открытием только возрастало. Вскоре ученые принялись читать популярные лекции о новой геометрии. Среди них был и Герман фон Гельмгольц, первым заговоривший о существах, обитающих на сфере или иной криволинейной поверхности.

Технические аспекты римановой геометрии многообразий, в настоящее время известной как дифференциальная геометрия, получили дальнейшее развитие в трудах Эудженио Бельтрами, Эльвина Бруно Кристоффеля и ученых итальянской школы под руководством Грегорио Риччи и Туллио Леви-Чивита. Позже оказалось, что именно их разработок не хватало Эйнштейну для открытия его теории.

 

Матричная алгебра

 

Алгебраисты тоже не сидели сложа руки, а развивали всё новые приемы вычисления для n-вариабельной алгебры – формальный символизм n-мерного пространства. Одним из таких методов стала матричная алгебра – прямоугольные массивы чисел, предложенные в 1855 г. Артуром Кейли. Такая абстракция естественным образом родилась из идеи об изменении координат. Это стало рутинным приемом – упрощать алгебраическое выражение, заменив переменные, например x и y, линейными комбинациями, например:

u = ax + by,

v = cx + dy

для констант a, b, c и d. Кейли представил пару (x, y) как вектор-столбец, а коэффициенты – таблицей размера 2 × 2, или матрицей. С соответствующим определением для умножения мы можем переписать изменение координат так:

 

Метод легко распространяется на таблицы с любым числом строк и столбцов, представляющие линейные изменения для любого числа координат.

 

ЧТО ГЕОМЕТРИЯ МНОГОМЕРНЫХ ПРОСТРАНСТВ ДАЛА ИМ

Примерно в 1907 г. немецкий математик Герман Минковский сформулировал теорию относительности Эйнштейна для четырехмерного пространства-времени, скомбинировав одномерное время и трехмерное пространство в единый математический объект. Он известен нам как пространство-время Минковского.

Требования теории относительности говорят, что естественная метрика пространства-времени Минковского не определяется теоремой Пифагора, в которой квадрат расстояния от точки (x, t) до начала координат равен x<sup>2</sup> + t<sup>2</sup>. Это выражение следует заменить интервалом x<sup>2</sup> – c<sup>2</sup>t<sup>2</sup>, где с – скорость света. Принципиальным изменением здесь является знак минус, который говорит о том, что события в пространстве-времени связаны с двумя конусами. Один (на нашей схеме это треугольник, поскольку пространство сократили на одно измерение) представляет будущее от нашего события, а другой – прошлое. Это геометрическое представление стало практически универсальным для современной физики.

Матричная алгебра позволяет делать расчеты для n-мерного пространства. По мере распространения новых идей складывался и новый геометрический язык для этого пространства, основанный на абстрактной алгебраической системе вычислений. Кейли считал свою идею не более чем удобным обозначением и предсказывал, что она никогда не получит иного применения.

Быстрый переход