Изменить размер шрифта - +
Дэвид Фоулер в своей книге «Математики Академии Платона» («The Mathematics of Plato’s Academy») утверждает, что это может толковаться иначе. Возможно, главной темой труда Евклида была теория иррациональных чисел, а рассуждения о правильных многогранниках – второстепенное приложение к ней. Действительно, мы можем интерпретировать текст Евклида по-разному, но одна особенность «Начал» говорит в пользу этой альтернативной теории. Основная часть теории чисел не нуждается в классификации правильных многогранников. Зачем же тогда Евклид включил их в свой труд? И только их прямая связь с теорией иррациональных чисел делает понятным такой ход.

 

Архимед

 

Величайшим из древних математиков считается Архимед. Он сделал важнейший вклад в геометрию, был первопроходцем в деле приложения математики ко всем явлениям мира и непревзойденным инженером. Но для математиков он будет памятен прежде всего исследованиями формы круга, шара и цилиндра. Для нас они связаны с числом π (пи), приблизительно равным 3,14159. Конечно, греки не работали с π напрямую: они представляли его геометрически, как отношение длины окружности к диаметру.

Ранние культуры уже имели представление о том, что длина окружности всегда одинаково соотносится с ее диаметром и что она длиннее примерно в три раза, может, чуть больше. Вавилоняне считали это число равным 3 <sup>1</sup>/<sub>8</sub>. Известное нам по школе знаменитое приближение для числа π – «архимедово число», равное 3 <sup>1</sup>/<sub>7</sub>, – ближе к истине, но тоже неточное. Архимед пошел намного дальше, в духе Евдокса подведя твердые доказательства под свои результаты. Насколько смогли установить древние греки, отношение между длиной окружности и диаметром должно быть иррациональным числом. И сейчас мы точно знаем, что так оно и есть, хотя с доказательством пришлось подождать до 1761 г., когда его открыл Иоганн Генрих Ламберт. Но как бы то ни было, Архимед, не сумев доказать, что π – рациональное число, вынужден был принять, что оно иррациональное.

Греческая геометрия лучше всего работает с многоугольниками – фигурами, образованными прямыми линиями. Но окружность – кривая, и Архимед подбирается к ней с помощью аппроксимирующих многоугольников. Чтобы вычислить π, он сравнил длину круга с периметрами многоугольников двух последовательностей: в одной фигуры были вписаны в круг, в другой – описаны вокруг него. Периметр прямоугольника в круге должен был быть меньше длины окружности, а периметр наружного – больше. Для простоты Архимед брал правильные многоугольники, деля их стороны пополам, начиная с шестиугольника и получая соответственно 12 сторон, 24, 48 и т. д. Он остановился на 96. Его вычисления дали результат 3 <sup>10</sup>/<sub>71</sub> &lt; π &lt; 3 <sup>1</sup>/<sub>7</sub>, т. е. значение π оказалось между 3,1408 и 3,1429.

Архимедовы исследования шара заслуживают особого внимания: мы не только знакомы с его строгим доказательством, но и знаем, как оно было открыто, – и уж в этой истории никакой строгости нет. Обоснование приводится в его книге «О шаре и цилиндре». Он доказывает, что объем шара равен двум третям от объема описанного около него цилиндра, а площадь поверхности шара равна площади боковой поверхности этого цилиндра. Говоря современным языком, Архимед доказал, что объем шара равен <sup>4</sup>/<sub>3</sub> πr<sup>3</sup>, где r – радиус; а площадь его поверхности равна 4πr<sup>2</sup>. Эти формулы используются и по сей день.

В доказательствах Архимед использовал метод исчерпывания. Он имеет важное ограничение: вам необходимо знать результат заранее, чтобы повысить свои шансы доказать его.

Быстрый переход