А типичный постулат: все прямые углы равны между собой.
Мы уже объединили оба эти типа утверждений в один и называем их аксиомами. Математические аксиомы – исходные утверждения, не требующие доказательств. Мы считаем, что аксиомы – как правила игры, и верим, что они всегда выполняются. Мы уже не задаемся вопросом, верны ли эти правила, – мы уже не думаем, что эта игра единственная в своем роде. Всякий, кто собирается участвовать в какой-то конкретной игре, должен соблюдать ее правила; иначе он волен выбрать другую, но в ней правила первой не будут работать.
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
Правильный многогранник, или платоново тело, – выпуклый многогранник, который состоит из равных граней в виде правильных многоугольников и имеет равное число ребер, выходящих из каждой вершины. Пифагорейцы описывали пять таких правильных многогранников.
Пять платоновых тел
• Тетраэдр образован четырьмя правильными треугольниками.
• Куб (гексаэдр) образован шестью квадратами.
• Октаэдр образован восемью правильными треугольниками.
• Додекаэдр образован 12 правильными пятиугольниками.
• Икосаэдр образован 20 правильными треугольниками.
Их связывали с четырьмя стихиями Античности: землей, воздухом, огнем и водой – и с пятым элементом – квинтэссенцией.
Во времена Евклида и позже, почти 2000 лет, математикам такое не могло и в голову прийти. Практически все относились к аксиомам как к самоочевидным истинам, чью незыблемость никто не посмел бы оспорить. Евклид недаром приложил все свои таланты, чтобы сделать аксиомы именно такими, – и почти преуспел. Однако одна – аксиома параллельности – оказалась особенно сложной и не такой уж очевидной. Многие ученые пытались вывести ее из более простых общих понятий. Позже мы увидим, к каким поразительным открытиям привели эти попытки.
Опираясь на эти простые утверждения, «Начала» обеспечивали доказательства всё более сложных геометрических теорем. Например, в книге I, теореме 5 доказывается, что углы у основания равнобедренного треугольника (у которого две стороны одинаковой длины) равны. Эта теорема была известна целому поколению викторианских школьников как pons asinorum, или «мост ослов»: чертеж, используемый в доказательстве Евклида, напоминал мост. Вдобавок это был первый серьезный камень преткновения для школяров, которые пытались зазубрить теорему, а не понять ее. В книге I, теореме 32 доказано, что сумма углов треугольника на плоскости равна 180°. В книге I, теореме 47 сформулирована теорема Пифагора.
Евклид выводил каждую свою теорему из уже доказанных теорем и разных аксиом. Он выстроил башню логики, которая тянулась всё выше, опираясь на фундамент из аксиом и используя логические выводы в качестве строительного раствора, скреплявшего кирпичи.
Сегодня нас уже не до конца удовлетворяет логика Евклида, потому что в ней есть множество прорех. Евклид слишком многие вещи принимает как данность, в наше время его список аксиом не считается полным. Например, кажется очевидным, что если линия проходит через какую-либо точку внутри круга, то она должна где-то пересекать круг, если продлить ее до нужной длины. Да, это очевидно, если вы нарисуете чертеж, но есть примеры, показывающие, что это вовсе не следует из аксиом Евклида. Евклид был выдающимся ученым, но слишком убежденным в том, что свойства, явно очевидные на чертежах, не нуждаются ни в доказательстве, ни в аксиоматике.
Всё гораздо серьезнее, чем кажется на первый взгляд. Есть немало известных примеров ошибочных суждений, ставших следствием мелких ошибок на изображении. Одно из них – «доказательство», что всякий треугольник имеет две равные стороны.
ЕВКЛИД АЛЕКСАНДРИЙСКИЙ 325–265 гг. |