В мистическом плане они считали, что число 1 – первичный источник всего во Вселенной. Числа 2 и 3 символизируют женское и мужское начала. Число 4 – символ гармонии, а также четырех стихий (земля, воздух, огонь и вода), из которых сотворено всё сущее. Пифагорейцы придавали особое мистическое значение числу 10, потому что 10 = 1 + 2 + 3 + 4 и объединяет в себе первичную единицу, женское начало, мужское начало и четыре стихии. Более того, эти числа образуют треугольник, а вся геометрия Древней Греции построена на свойствах треугольников.
Число 10 в виде треугольника
ГАРМОНИЯ ВСЕЛЕННОЙ
Главным доказательством своей концепции Вселенной чисел пифагорейцы считали музыку: они обнаружили ряд поразительных связей между гармонией звуков и простыми дробями. В результате несложных экспериментов они открыли, что если натянутая струна издает определенный звук, то вместе со струной вдвое меньшей длины она будет издавать гармоничные созвучия, которые сейчас называют октавой. Струна длиной в <sup>2</sup>/<sub>3</sub> и <sup>1</sup>/<sub>3</sub> от первой также создают гармоничные звуки.
Сегодня эти числовые аспекты музыки относят к физике колебания струн, которые служат основой для теории волн. Количество волн, помещающихся в заданной длине струны, является целым числом, и эти числа образуют простые соотношения. Если они не укладываются в простую пропорцию, соседние звуки накладываются друг на друга, создавая несогласованные «биения», неприятные для слуха. На самом деле всё намного сложнее и включает особенности восприятия нашего мозга, но в любом случае мы видим физическое обоснование открытия пифагорейцев.
Пифагорейцы говорили о существовании девяти небесных тел: Солнце, Луна, Меркурий, Венера, Земля, Марс, Юпитер и Сатурн плюс центральный огонь, отличный от Солнца. В их космологии числу 10 придавалось столь серьезное сакральное значение, что они включили в эту систему Антихтон (Антиземля, Противоземля) – загадочную планету, скрытую от нас Солнцем.
Это две подобные формы
Как мы уже знаем, целые числа 1, 2, 3 и т. д. естественно приводят нас ко второму виду чисел – дробям. Математики называют их рациональными числами. Это дроби вида <sup>a</sup>/<sub>b</sub>, где a и b – целые числа (также b не равно 0, иначе вся дробь не имеет смысла). Дроби могут делить целые числа на сколь угодно малые части, а значит, длину стороны геометрической фигуры можно аппроксимировать настолько близко, насколько мы пожелаем, с помощью рациональных чисел. Кажется вполне естественным, что можно в точности разделить число так, чтобы все длины были рациональными.
Если бы это было возможно, геометрия стала бы намного проще: два любых отрезка можно было бы представить целыми числами, кратными длине небольшого отрезка, и так получить их общую длину, сложив множество копий таких отрезков. Кому-то это может показаться неважным, но мы значительно упростили бы понимание теории длин, площадей и особенно подобия фигур (которые имеют одинаковую форму, но разный размер). С помощью схем, сформированных из бесконечного множества копий одной и той же базовой формы, можно доказать что угодно.
К несчастью, этой мечте не суждено было осуществиться. По легенде, один из пифагорейцев, Гиппас из Метапонта, обнаружил, что это утверждение ошибочно. В частности, он доказал, что диагональ единичного квадрата (квадрата со стороной, равной одной единице), иррациональна, не является дробью. Известно (хоть это и непроверенные данные, но отличная история), что он оплошал, озвучив этот факт, когда пифагорейцы пересекали на лодке Средиземное море. Его «товарищи по цеху» пришли в такое негодование, что вышвырнули его за борт, и он утонул. Но, скорее всего, дело ограничилось его отлучением от братства. |