Это верно: изображение всегда оставляет больший простор для толкований. Более того, картинка может содержать скрытые намеки. Мы не можем изобразить некий «обобщенный» треугольник: любой треугольник будет иметь свою форму и размеры, которые порой не соответствуют случайно выбранной фигуре. Но поскольку визуальная интуиция остается очень мощной особенностью нашего мозга, наглядные образы играют важную роль в математике. Фактически они определяют вторую по важности идею предмета после чисел, т. е. его форму.
Табличка YBC 7289 с клинописными числами
Увлечение математиков формами имеет долгую историю. Даже на вавилонских табличках мы находим диаграммы. Например, на табличке с регистрационным номером YBC 7289 есть квадрат с двумя диагоналями. Его стороны отмечены клинописными символами, означающими 30. Выше на одной из диагоналей стоит 1;24,51,10, а под нею 42;25,35, которое равно произведению первого числа на 30, а также длине этой диагонали. Таким образом, 1;24,51,10 – длина диагонали меньшего квадрата со стороной, равной единице. Теорема Пифагора утверждает, что она равна корню квадратному из 2, и мы обозначаем его как √2. 1;24,51,10 приближает √2 с точностью до шести цифр после запятой.
Первая систематизация с использованием схем, ограниченным применением символов и изрядной долей логики встречается в описании геометрии Евклидом. Он следовал традиции, восходящей к культу Пифагора, чей расцвет пришелся на 500 г. до н. э. Однако Евклид настаивал, что любое положение математики должно иметь логическое доказательство для признания его достоверности. В записях Евклида есть важное нововведение – использование в доказательствах рисунков и логических построений. И многие века слово «геометрия» тесно ассоциировалось с этим подходом.
В этой главе мы проследим историю геометрии от Пифагора через Евклида и его предшественника Евдокса до позднего периода греческого классицизма, вплоть до его «наследников» Архимеда и Аполлония. Эти ранние геометры проложили путь для всех дальнейших работ с наглядными суждениями в математике. Также они установили стандарты логического доказательства, сохранившиеся неизменными на протяжении тысячелетий.
Пифагор
Сегодня мы принимаем как должное то, что математика дает нам ключи к законам существования природы. Первые систематизированные записи об этом пришли к нам от пифагорейцев – приверженцев мистического культа, датируемого промежутком между 600 и 400 гг. до н. э. Его основатель Пифагор родился около 569 г. до н. э. на Самосе. Место и дата его смерти покрыты мраком, но в 460 г. до н. э. основанный им культ подвергся нападкам и искоренению, а тайные места сборищ были уничтожены. В одном из них, доме Мило в Кротоне, более 50 захваченных пифагорейцев вырезали на месте. Многие из выживших сбежали в Фивы в Верхнем Египте. Не исключено, что одним из этих людей был сам Пифагор. Но даже если это всего лишь красивая выдумка, мы практически ничего не знаем о Пифагоре наверняка. Имя его у всех на слуху, главным образом из-за знаменитой теоремы о прямоугольном треугольнике, но мы даже не уверены, доказал ли ее он сам.
Зато нам известно гораздо больше о философии и убеждениях пифагорейцев. Они понимали, что математика – не реальность, а абстрактная концепция. В то же время они верили, что эта абстракция как-то воплощается в «идеальной» концепции, существуя в некоем странном воображаемом мире. То есть, например, нарисованный палочкой на песке круг – безуспешная попытка круга стать идеальным, совершенно ровным и невообразимо тонким.
Самым важным аспектом философии пифагорейцев была идея, что в основе всего лежат числа. Они выражали свою веру с помощью мифологических символов и подкрепляли ее практическими наблюдениями. В мистическом плане они считали, что число 1 – первичный источник всего во Вселенной. |