Как показано на графике, она ближе к решению – точке x, чем исходная точка.
АВГУСТА АДА КИНГ, ГРАФИНЯ ЛАВЛЕЙС 1815–1852
Августа Ада была дочерью поэта лорда Байрона и Анны Милбенк. Ее родители расстались через месяц после рождения девочки, и она больше никогда не видела отца. Ребенком она уже показала способности к математике; в отличие от своих современников, леди Байрон сочла это отличным упражнением для развития ума своей дочки и поощряла ее в этом увлечении. В 1833 г. Ада познакомилась с Чарльзом Бэббиджем на званом обеде, и очень скоро, побывав на демонстрации его прототипа аналитической машины, девушка нашла ее восхитительной и моментально разобралась в ее устройстве. Она стала графиней Лавлейс, когда в 1838 г. ее муж получил титул графа.
В 1843 г. к своему переводу статьи Луиджи Менабреа «Заметки об аналитической машине Чарльза Бэббиджа» Ада добавила небольшое приложение, впоследствии ставшее образцом программ, разработанных ею собственноручно. Она писала, что «отличительной особенностью аналитической машины… является использование в ней принципа управления с помощью перфокарт, изобретенного Жаккардом для изготовления самых сложных узоров для парчовых тканей. Можно сказать, что аналитическая машина сплетает алгебраические формулы так же, как ткацкий станок Жаккарда – цветы и листья».
В 36 лет у женщины развился рак матки, и после долгих мучений она умерла от кровопускания на руках у своих врачей.
Вторым важным приложением численных методов стало решение дифференциальных уравнений. Предположим, мы решаем уравнение
и нам дано, что x = x<sub>0</sub> в момент времени t = 0. Согласно Эйлеру, простейший способ – аппроксимация dx/dt с помощью
где ε очень мала. Тогда аппроксимация дифференциального уравнения принимает вид:
x(t + ε) = x(t) + ε f(x(t)).
Начиная с x(0) = x<sub>0</sub> мы последовательно найдем значения f(ε), f(2ε), f(3ε) – в общем, f(nε) для любого целого n > 0. Обычное значение ε, скажем, 10<sup>–6</sup>. Миллион итераций (повторов) формулы покажет x(1), следующий миллион x(2) и т. д. Для современных компьютеров миллион вычислений – пустяк, и это уже вполне практичный метод.
Однако метод Эйлера оказался слишком прост для ученых, и пришлось изобрести множество улучшений. Самым известным стал целый класс методов Рунге – Кутты, названный в честь немецких математиков Карла Рунге и Мартина Кутты, впервые предложивших их в 1901 г. Один из них, так называемый метод Рунге – Кутты четвертого порядка, широко используется в инженерии, прикладной и теоретической математике.
Нужды современной нелинейной динамики породили несколько сложнейших методов, позволяющих избежать накопления ошибок даже в длительных временных периодах, которые сохраняют определенную структуру, связанную с точным решением. Например, в механической системе без трения полная механическая энергия сохраняется. И есть возможность настроить численный метод так, чтобы на каждом шагу энергия сохранялась точно. Такая процедура исключает риск, что вычисленное решение будет мало-помалу отклоняться от точного, подобно тому как маятник постепенно останавливается, теряя энергию.
ЧТО ЧИСЛЕННЫЕ МЕТОДЫ ДАЛИ ИМ
Ньютону не только пришлось разобраться в природе вычислений – ему удалось изобрести эффективные методы вычислений. Он широко внедрил степенные ряды для описания функций, потому что научился дифференцировать и интегрировать эти ряды одно выражение за другим. Он также использовал их для вычисления значения функций, создав один из ранних численных методов, который используется до сих пор. На одной из страниц его манускриптов, датируемой 1665 г. |