е. вероятность того, что что-то случится, всегда равна 1). Набор B также должен обладать теоретико-множественными свойствами, чтобы поддерживать понятие меры.
В случае с костями множество X состоит из чисел 1−6, а множество B содержит все подмножества X. Мерой любого множества Y в составе B будет количество элементов Y, деленное на 6. Эта мера согласуется с интуитивной идеей, что любая грань кости имеет вероятность выпадения <sup>1</sup>/<sub>6</sub>. Однако использование меры требует от нас учитывать не только число граней, но и сами множества граней. С таким множеством Y связана вероятность того, что выпадет одна из граней множества Y. Интуитивно это будет размер Y, деленный на 6.
Благодаря этой простой идее Колмогоров положил конец спорам, в том числе вековым, и создал строгую теорию вероятностей.
Статистические данные
Главным приложением и ответвлением теории вероятностей стала статистика, использующая вероятности для анализа данных реального мира. Она выросла из астрономии XVIII в., когда возникла необходимость учитывать ошибки наблюдений. Эмпирически и теоретически они распределены согласно функции ошибок, или нормальному распределению. Кривая этой функции формой напоминает колокол и часто называется колоколом Гаусса (колоколообразной кривой). Здесь величина ошибки откладывается по горизонтальной оси с нулевым значением посередине, а вершина кривой представляет вероятность ошибки соответствующей величины. Мелкие ошибки гораздо вероятней, серьезные случаются гораздо реже.
Колоколообразная кривая
В 1835 г. Адольф Кетле выступил с предложением использовать колоколообразную кривую для моделирования социальных данных: рождений, смертей, разводов, преступлений и суицидов. Он открыл, что, хотя такие события непредсказуемы для отдельных лиц, они обладают статистическими закономерностями, если рассматривать их по популяции в целом. Он воплотил свою идею, создав «среднестатистического человека», фиктивную личность со средними показателями по всем параметрам. По Кетле, среднестатистический человек вовсе не был отвлеченной математической концепцией: это объект социальной справедливости.
График Кетле для количества людей, имеющих данный вес. Вес откладывается по горизонтальной оси, количество людей – по вертикальной
Начиная с 1880-х общественные науки существенно расширили использование идей статистики, особенно колоколообразной кривой, в качестве замены реальному эксперименту. В 1865 г. Фрэнсис Гальтон занялся исследованием наследственности человека. Как рост ребенка соотносится с ростом его родителей? А как насчет веса или умственных способностей? Он принял колоколообразную кривую Кетле, но воспринимал ее как способ разделения определенных популяций, а не как моральный императив. Если какие-то данные демонстрировали два пика вместо одного на колоколообразной кривой, значит, популяция должна состоять из двух субпопуляций, каждая со своей кривой. К 1877 г. исследования Гальтона подвели его к изобретению регрессионного анализа – способа сравнения одного множества данных с другим для выявления наиболее вероятных взаимоотношений.
Другой заметной фигурой был Исидор Эджуорт. Он не был наделен воображением Гальтона, а был, скорее, технократом и сумел подвести под идеи Гальтона надежную математическую основу. Третьим был Карл Пирсон, внесший значительный вклад в развитие математики. Однако наибольшую пользу своими открытиями Пирсон принес в качестве «продавца идеи»: он убедил весь мир, что статистика – очень полезная наука.
ЧТО ТЕОРИЯ ВЕРОЯТНОСТЕЙ ДАЕТ НАМ
Чрезвычайно важная область приложения теории вероятностей – медицинские испытания новых лекарств. В этих экспериментах проводится сбор данных о воздействии препарата: действительно ли он лечит болезнь и имеет ли какие-то нежелательные побочные эффекты. |