Изменить размер шрифта - +
Но каждое подмножество сосчитано здесь 24 раза: начав с 1234, далее мы найдем 1243, 2134 и т. д. и получим 24 способа (4 × 3 × 2) переставить четыре объекта. Значит, точный ответ будет 360/24, т. е. 15. Этот аргумент показывает, что количество способов выбрать m объектов из общего числа n объектов равно:

 

Это выражение называется биномиальным коэффициентом, потому что появляется и в алгебре. Если мы преобразуем его в таблицу, чтобы n-я строка содержала биномиальные коэффициенты

 

то результат будет выглядеть так.

В шестой (счет начинается с нуля) строке мы увидим числа 1, 6, 15, 20, 15, 6, 1.

Сравним с формулой

(x + 1)<sup>6</sup> = x<sup>6</sup> + 6x<sup>5</sup> + 15x<sup>4</sup> + 20x<sup>3</sup> + 15x<sup>2</sup> + 6x + 1,

и мы видим, что те же числа появляются как коэффициенты. Это не совпадение.

Треугольник чисел назван треугольником Паскаля, потому что обсуждался Паскалем в 1655 г. Однако известен он был гораздо раньше: первое упоминание в древнеиндийском шастре «Чандас шастра» датируется примерно 950 г. Также его знали персидские математики Аль-Караджи и Омар Хайям (в современном Иране его называют треугольником Хайяма).

 

Треугольник Паскаля

 

Теория вероятностей

 

Биномиальные коэффициенты с большим успехом были использованы в первой книге по теории вероятностей – труде под названием «Искусство предположений», написанном Якобом Бернулли в 1713 г. В книге автор поясняет столь необычное название.

Мы определяем искусство предположений, или стохастическое искусство, как искусство точной оценки вероятностей, чтобы в наших суждениях и действиях мы всегда опирались на то, что признано лучшим, наиболее приемлемым, наиболее определенным или рекомендуемым; это единственная основа для мудрости философа и благоразумия государственного мужа.

Возможно, правильнее было бы назвать эту книгу «Искусство догадок».

Бернулли принимал как данность, что чем больше количество испытаний, тем лучше можно будет оценить вероятность.

Предположим, без вашего ведома в урну поместили 3000 белых камней и 2000 черных. Пытаясь определить количество этих камней, вы вынимаете один камень за другим (каждый раз возвращая его обратно) и обращаете внимание, как часто попадаются белый и черный камни. Насколько часто вам придется так делать: 10 раз, или 100 раз, или 1000 раз и т. д., что более вероятно, ‹…› чтобы [в итоге] выбранные белые и черные камни находились в том же соотношении 3:2, что и в урне?

Здесь Бернулли не только задал один из основных вопросов, но и изобрел стандартный иллюстративный пример – камни в урне. Он явно был уверен, что пропорция 3:2 будет разумным результатом, но понимал, что в реальности эксперименты могут лишь приблизиться к ней. Однако он был уверен еще и в том, что при достаточном количестве попыток эта аппроксимация будет всё точнее и точнее.

Тут была своя трудность, надолго затормозившая развитие этой науки. В подобных экспериментах всегда есть определенная возможность, что по чистой случайности все вынутые из урны камни окажутся белыми. Нет достаточно надежной гарантии, что пропорция будет всегда стремиться к <sup>3</sup>/<sub>2</sub>. В лучшем случае мы можем утверждать, что с очень высокой вероятностью числа будут приближаться к этому значению. Но тогда возникает риск круговой логики: мы используем пропорции, полученные в опытах, чтобы оценить вероятности, но также используем вероятности, чтобы получить этот вывод. Как мы видим, что вероятность вытащить только белые камни крайне мала? Если мы добиваемся этого в большем числе испытаний, то должны учесть и возможность того, что результат по какой-то причине окажется ошибочным.

Быстрый переход