Изменить размер шрифта - +
После начала Второй мировой войны Гёдель из опасений быть призванным на службу в немецкую армию эмигрировал в США, пробираясь через Россию и Японию. В 1940 г. он получил второй плодотворный результат, доказав, что отрицание континуум-гипотезы Кантора недоказуемо в стандартной аксиоматике теории множеств.

Он получил гражданство США в 1948 г. и провел остаток жизни в Принстоне. С годами он всё больше опасался за свое здоровье, пока не убедил себя в том, что кто-то пытается его отравить. Он отказался от пищи и скончался в больнице. До самого конца он любил вести философские диспуты со своими посетителями.

Любопытным следствием открытий Гёделя стал вывод, что всякая аксиоматическая система в математике должна быть неполна и вы никогда не сможете написать конечный список аксиом, который однозначно определит все истинные и ложные теоремы. Исключения не было: программа Гильберта не работала. Поговаривают, что сам Гильберт пришел в ярость, впервые услышав о работе Гёделя. Однако гневаться скорее стоило на себя, ведь основная идея в работе Гёделя была безупречна. (Техническое воплощение этой идеи оказалось очень сложным, но Гильберт всегда отлично справлялся с такими трудностями.) Скорее всего, Гильберт понял, что он должен был предвидеть появление теорем Гёделя.

Рассел свел на нет значение книги Фреге своим логическим парадоксом о сельском брадобрее, который бреет всякого, кто не бреется сам: множество всех множеств, не являющееся элементом самого себя. Гёдель свел на нет значение программы Гильберта другим логическим парадоксом – человека, который сказал: это утверждение ложно. По сути, это неразрешимое утверждение Гёделя – на котором строится всё остальное – теорема T, которая утверждает: «Эта теорема не может быть доказана».

Если всякая теорема не может быть ни доказана, ни опровергнута, то утверждение Гёделя T противоречиво в обоих случаях. Предположим, Т можно доказать. Тогда Т утверждает, что Т не может быть доказано, – противоречие! А если Т можно опровергнуть, то утверждение Т ложно, и будет ошибкой утверждать, что Т не может быть доказано. Получается, Т можно доказать, – снова противоречие. Следовательно, предположение о том, что всякую теорему можно доказать или опровергнуть, говорит нам, что Т может быть доказано тогда и только тогда, когда оно не может быть доказано.

 

К чему же мы пришли?

 

Теоремы Гёделя изменили наш взгляд на логические основания математики. Они заставили предположить, что кажущиеся нам сейчас неразрешимыми проблемы могут вообще не иметь решения: ни подтверждающего их, ни опровергающего, а вечно пребывать в чистилище неразрешимости. И такими предстают перед нами очень многие интересные проблемы. Однако эффект от работ Гёделя на практике так и не вышел далеко за пределы фундаментальной математики, в лоне которой и появился на свет. Математики продолжают искать доказательства для гипотез Пуанкаре и Римана, не жалея времени на открытие новых доводов за и против. Они отдают себе отчет в том, что проблема может оказаться неразрешимой, и даже могут заняться поисками доказательств этой неразрешимости, если найдут исходную точку. Однако большинство из известных нам неразрешимых проблем манят ученых именно неразрешимостью, и вряд ли кому-то удастся ее доказать.

 

ЧТО ЛОГИКА ДАЕТ НАМ

Важнейший вариант гёделевых теорем о неполноте был открыт Аланом Тьюрингом. Их анализ очертил путь для создания первых компьютеров. В своей работе On Computable Numbers, with an application to the Entscheidungsproblem («О вычислимых числах, приложение к проблеме разрешения»), опубликованной в 1936 г., Тьюринг предложил формализацию алгоритмических вычислений – следующую заранее написанному алгоритму – в рамках так называемой машины Тьюринга. Это математическая идеализация устройства, которое пишет символы 0 и 1 на движущейся ленте, подчиняясь конкретным правилам.

Быстрый переход