В конечной Вселенной числу коров есть предел, но нет предела в математике количеству целых чисел. Значит, наша интуиция может оказаться обманчивой, и ее следует игнорировать.
Гильберт пришел к такой точке зрения в своей работе над аксиоматическим обоснованием евклидовой геометрии. Он обнаружил в системе аксиом Евклида логические недостатки и понял, что Евклид был введен в заблуждение своим зрением. Поскольку он воспринимал линию как длинный тонкий предмет, окружность как круг и точку как крапинку, он безоговорочно признавал за этими предметами определенные свойства, не придавая им форму аксиом. После нескольких попыток Гильберт сумел составить список из 21 аксиомы и обсудил их роль в евклидовой геометрии в 1889 г. в своем труде «Основания геометрии».
Гильберт также настаивал, что логический вывод должен быть обоснованным независимо от особенностей его интерпретации. Всё, что удовлетворяет какой-то интерпретации аксиом, но не удовлетворяет другой, чревато логическими ошибками. И именно этот подход к аксиоматике, а не частные исследования геометрии стал в итоге самым весомым вкладом Гильберта в основания математики. Его точка зрения повлияла на саму суть математики, делая ее намного проще – и респектабельнее – при изобретении новых концепций путем составления для них списка аксиом. Большинство абстрактных исследований в математике начала ХХ в. исходит как раз из позиции Гильберта.
Часто говорят, что Гильберт отстаивал утверждение, будто математика – отвлеченная игра в символы, но это преувеличение. Гильберт считал, что если вы хотите подвести под свою идею надежную логическую основу, следует рассуждать о ней так, как если бы она была отвлеченной игрой в символы. Всё остальное не имеет отношения к логической структуре. Но ни один человек, достаточно серьезно относящийся к математическим открытиям Гильберта и имеющий представление о его беззаветной преданности науке, не сказал бы, что этот ученый считал, будто дело его жизни – это отвлеченная игра.
ЧТО ЛОГИКА ДАЛА ИМ
Чарльз Лютвидж Доджсон, более известный как Льюис Кэрролл, использовал свои формулировки для раздела математической логики, известного нам как логика высказываний, чтобы составлять и решать логические загадки. Типичный пример такой формулировки он приводит в своем труде «Символическая логика» от 1896 г.
• Никто из тех, кто действительно ценит Бетховена, не станет шуметь во время исполнения «Лунной сонаты».
• Морские свинки безнадежно невежественны в музыке.
• Те, кто безнадежно невежествен в музыке, не станут соблюдать тишину во время исполнения «Лунной сонаты».
Вывод таков: ни одна морская свинка не ценит Бетховена. Такая форма логического построения называется силлогизмом и уходит корнями в классические труды древних греков.
Преуспев в геометрии, Гильберт обратил взор на гораздо более амбициозный проект: подвести под всю математику непоколебимый логический фундамент. Для этого он внимательно изучал труды современных ему логиков и составил подробную программу для того, чтобы раз и навсегда привести в порядок основания математики. В дополнение к доказательству того, что математика свободна от противоречий, он полагал, что нерешаемых проблем не существует в принципе и любое математическое утверждение может быть или доказано, или опровергнуто. Успех на первых порах убедил Гильберта в том, что он на верном пути и приблизился к своей основной цели.
Гёдель
Но нашелся всё же логик, которого так и не убедили доводы Гильберта в пользу того, что математика логически последовательна. Его звали Курт Гёдель, и его беспокойство по поводу программы Гильберта навсегда изменило наше отношение к математической истине.
До Гёделя математика просто считалась верной – и это был высший пример истины, потому что истина утверждения 2 + 2 = 4 была чем-то из сферы чистой мысли, независимой от физического мира. |