До Гёделя математика просто считалась верной – и это был высший пример истины, потому что истина утверждения 2 + 2 = 4 была чем-то из сферы чистой мысли, независимой от физического мира. Математические истины не могут быть опровергнуты дальнейшими экспериментами. В этом смысле они превосходят физические истины вроде ньютоновского закона о силе гравитационного притяжения, обратно пропорциональной квадрату расстояния, опровергнутого наблюдениями за движением в перигелии Меркурия, которые подтверждают новую теорию гравитации, предложенную Эйнштейном.
Благодаря Гёделю математическая истина стала восприниматься как иллюзия. Существуют лишь математические доказательства. Их внутренняя логика может быть безупречной, но при этом они существуют в более широком контексте фундаментальной математики, где нет гарантий, что игра в целом вообще имеет смысл. Гёдель не просто предположил это, – он это доказал. По сути, два его достижения в совокупности разрушили до основания аккуратную, оптимистичную программу Гильберта.
Гёдель доказал, что если математика логически последовательна, то доказать это невозможно. И не потому, что он сам не смог найти доказательство, а потому, что доказательства не существует. И если вдруг, паче чаяния, вам удастся доказать, что математика последовательна, следом тут же придет доказательство тому, что это не так. Он также доказал, что ряд математических утверждений не могут быть ни доказаны, ни опровергнуты. И вновь не потому, что он лично не смог этого добиться, но потому, что это невозможно. Утверждения такого рода называются неразрешимыми.
Он доказал эти утверждения изначально в рамках признанных логических математических формулировок, принятых Расселом и Уайтхедом в их «Принципах математики». Поначалу Гильберт надеялся, что есть выход: надо просто найти более прочный фундамент. Но когда логики ознакомились с работой Гёделя, то очень быстро поняли, что те же идеи сработают для любой логической формулировки в математике, достаточно строгой, чтобы ясно выразить основные понятия арифметики.
КУРТ ГЁДЕЛЬ 1906–1978
В 1923 г., когда Гёдель поступил в университет в Вене, он еще не мог выбрать, изучать ли ему математику или физику. На его решение повлияли лекции парализованного Филиппа Фуртвенглера (брата известного дирижера и композитора Вильгельма). Сам Гёдель с детства был слаб здоровьем, и воля Фуртвенглера, сумевшего преодолеть физическую немощь, произвела на него большое впечатление. На семинарах под руководством Морица Шлика Гёдель начал изучать «Введение в математическую философию» Рассела, и тогда ему стало окончательно ясно, что его будущее связано с математической логикой.
Его докторская диссертация от 1930 г. доказывала, что одна ограниченная логическая система – исчисление высказываний первого порядка – является полной. Всякая истинная теорема может быть доказана и всякая ложная – опровергнута. Больше всего он известен благодаря доказательству гёделевых теорем о неполноте. В 1931 г. Гёдель опубликовал свою судьбоносную статью «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах». В ней он доказывал, что ни одна система аксиом не будет логически полной для безупречной формализации математики. В 1931 г. он вступил в дискуссию о своей работе с логиком Эрнстом Цермело, но встреча ученых прошла неудачно, возможно потому, что Цермело успел прийти к таким же открытиям, только не смог их опубликовать.
В 1936 г. Шлик погиб от руки студента-нациста, и у Гёделя случился нервный срыв (уже второй). Оправившись от болезни, Гёдель выступил с несколькими лекциями в Принстоне. В 1938 г. он вопреки желанию матери женился на Адели Поркерт и вернулся в Принстон после включения Австрии в состав Германии. После начала Второй мировой войны Гёдель из опасений быть призванным на службу в немецкую армию эмигрировал в США, пробираясь через Россию и Японию. |