Он доказал, что проблема остановки машины Тьюринга – выполнится ли окончательное вычисление для данного ввода данных – неразрешима. А значит, нет такого алгоритма, который бы предсказал, остановится ли вычисление или нет.
Тьюринг доказал свой результат, предположив, что проблема остановки разрешима, и построив алгоритм, который останавливается тогда и только тогда, когда не останавливается. Вот и противоречие. Его результат показывает, что существуют ограничения для вычислимости. Некоторые философы расширили эти идеи для определения пределов рационального мышления, и было выдвинуто предположение, что сознание не может функционировать алгоритмически. Однако их аргументы пока не так уж и убедительны. Они показали, что наивно полагать, будто мозг работает как современный компьютер, хотя это не значит, что компьютер не может имитировать работу мозга.
По мере того как на основе предшествующих теорий математики постоянно строили всё новые конструкции, одна сложнее другой, сверхструктура математики начала раскалываться из-за нераспознанных предположений, которые на поверку оказались ложными. Для предотвращения коллапса требовалась серьезная работа по укреплению фундамента.
Последующие работы углубились в истинную природу чисел, двигаясь вспять от комплексных чисел к действительным, рациональным и, наконец, натуральным. Но и там процесс не закончился. Сами числовые системы подверглись пересмотру с точки зрения еще более простых составляющих – множеств.
Теория множеств принесла немало преимуществ, включая разумную, хотя и неортодоксальную систему бесконечных чисел. Она также открыла несколько фундаментальных парадоксов, связанных с понятием множества. Их решение не стало, как надеялся Гильберт, полным обоснованием аксиоматической математики и доказательством ее логической последовательности. Но оно доказало, что математика по природе своей имеет ограничения и некоторые задачи вообще не имеют решения. В результате нам пришлось кардинально изменить свое отношение к понятиям математической истины и определенности. И это прекрасно: лучше жить в осознании пределов наших возможностей, чем в обманчивом раю.
Глава 18. Насколько это вероятно?
Рациональный подход к случайности
В XX и начале ХХI в. математика развивалась взрывными темпами. За последние 100 лет в ней было сделано больше открытий, чем за всю предыдущую историю человечества. Даже для краткого их перечисления потребуются тысячи страниц, так что придется выбирать лишь некоторые примеры из обилия доступных сведений.
Одна из самых юных областей математики – теория вероятностей, изучающая возможности появления случайных событий. Это математика неопределенности. Первые робкие шаги делались на протяжении долгих веков: это и попытки вычислить с помощью комбинаторики шансы выигрыша в азартных играх, и методы повышения точности астрономических наблюдений, несмотря на ошибки наблюдателей, но только к началу XX в. теория вероятностей приобрела статус самостоятельной науки.
Вероятность и статистика
В настоящее время теория вероятностей – обширнейшая область математики, и ее прикладная ветвь, статистика, оказывает важное влияние на повседневную жизнь – возможно, более значительное, чем любой из прочих основных разделов математики. Статистика стала одним из главных аналитических методов даже в медицине. Ни одно лекарственное средство не допускается на рынок и ни один метод лечения не разрешается в больнице, пока клинические испытания не докажут их полную безопасность и эффективность. Здесь безопасность относительна: лечение может быть предложено больным, страдающим от смертельно опасного недуга, когда шансы на успех слишком малы, но не в менее тяжелых случаях.
Также теория вероятностей чаще всех прочих областей математики страдает от неверного толкования и искажений. |