Изменить размер шрифта - +

Как только математики составили таблицы логарифмов, они стали доступны любому, кто знаком с методом. С XVI в. вплоть до середины XX в. практически все научные вычисления, особенно астрономические, использовали логарифмы. Однако уже с 1960-х электронные калькуляторы и компьютеры потеснили логарифмы, сделали их ненужными. Но сама концепция остается жизненно важной для математики: логарифмы прочно занимают ведущие роли во многих отраслях этой науки, включая исчисление и комплексный анализ. Кроме того, многие процессы в физике и биологии были описаны в логарифмических функциях.

Современный взгляд на логарифмы определяет их как функцию, обратную показательной. Используя логарифмы с основанием 10, что вполне естественно для десятичной системы счисления, мы говорим, что x является логарифмом y, если y = 10<sup>x</sup>. Например, поскольку 10<sup>3</sup> = 1000, логарифм 1000 (с основанием 10) равен 3. Главное свойство логарифмов определяется свойством показательной функции:

10<sup>a</sup><sup> +</sup> <sup>b</sup> = 10<sup>a</sup> × 10<sup>b</sup>.

Но чтобы логарифмами можно было пользоваться, необходимо уметь найти соответствующий x для всякого положительного вещественного y. Согласно утверждению Ньютона и большинства ведущих ученых того времени, главная идея состояла в том, что любое рациональное число 10<sup>p</sup>/<sup>q</sup> можно определить как корень q-й степени из 10<sup>p</sup>. Поскольку любое вещественное число x может сколько угодно близко быть приближенным рациональным числом <sup>p</sup>/<sub>q</sub>, мы можем приблизить 10<sup>x</sup> с помощью 10<sup>p</sup>/<sup>q</sup>. Это не самый эффективный способ вычислить логарифм, но самый простой способ доказать его существование.

Исторически изобретение логарифмов шло совсем не так гладко. У его истоков стоит шотландец Джон Непер, барон Мерчистон. Он всю жизнь увлекался самыми эффективными методами вычислений и в итоге сам изобрел знаменитые палочки Непера (или кости Непера). Начиная с 1594 г. он переходит в более отвлеченную область науки, и ему потребовалось 20 лет, чтобы подготовить свой труд к публикации. Судя по всему, он начал исследования с геометрических прогрессий – последовательностей чисел, где каждое последующее является произведением предыдущего на один и тот же множитель. Например, возведение в степень числа 2:

1 2 4 8 16 32 …

или степени десятки:

1 10 100 1000 10 000 100 000 …

Уже давно было замечено, что сложение показателей степени эквивалентно перемножению степеней. Это удобно, если вы перемножаете две целые степени числа 2 или, например, две целые степени 10. Но между этими числами большой разрыв, и степени 2 или 10 не очень помогут, если придется перемножать, например, 57,681 и 29,443.

 

ПЛОСКАЯ ТРИГОНОМЕТРИЯ

В наши дни тригонометрия прежде всего развита на плоскости, где геометрия попроще и ее принципы легче понять. Можно только удивляться, как часто новые математические идеи возникают в сложном контексте, а последующие упрощения появляются гораздо позже. Существует теорема синусов и теорема косинусов для треугольников на плоскости, и они стоят того, чтобы на них остановиться. Рассмотрим плоский треугольник с углами А, B и С и противолежащими им сторонами a, b, с.

Тогда теорема синусов имеет следующий вид:

а теорема косинусов:

a<sup>2</sup> = b<sup>2</sup> + c<sup>2</sup> − 2bc ⋅ cosA

(соответствующие формулы можно получить и для других углов). Мы можем использовать теорему косинусов для того, чтобы найти углы треугольника по его сторонам.

Стороны и углы треугольника

 

Логарифмы Непера

 

Пока доблестный барон упорно искал способ заполнить разрывы в геометрических прогрессиях, лейб-медик шотландского короля Якова VI Джеймс Крейг рассказал Неперу об открытии, широко известном в Дании, с громоздким названием «простаферезис».

Быстрый переход