Решение серьезной задачи, как правило, требует нескольких озарений. Этап вынашивания одной идеи может быть прерван вспомогательным процессом подготовки, вынашивания и озарения какой-то другой задачи, решение которой оказалось необходимым для работы над первой, основной идеей. Решение любой стоящей задачи, великой или не слишком, обычно включает в себя множество таких последовательностей, заключенных одна в другой, как замысловатые фракталы Бенуа Мандельброта. Вы решаете задачу, разбивая ее на подзадачи. Вы убеждаете себя, что если удастся решить эти подзадачи, то затем из полученных результатов можно будет собрать решение задачи в целом. Иногда они решаются, иногда приходится возвращаться к началу пути. Иногда подзадача сама рассыпается на несколько кусочков. Даже уследить за происходящим и удержать в голове общую картину порой очень и очень непросто.
Я назвал работу подсознания «интуицией». «Интуиция» — одно из удобных, но вводящих в заблуждение слов, таких как «инстинкт», которые широко используются, хотя и не имеют четкого значения. Подобными словами называют нечто непонятное, присутствие чего тем не менее отрицать невозможно. Математическая интуиция — это способность разума чувствовать форму и структуру и распознавать закономерности, которые мы не в состоянии уловить на сознательном уровне. Интуиция не обладает кристальной чистотой осознанной логики, зато способна привлечь наше внимание к вещам, которые мы никогда не стали бы рассматривать сознательно. Нейробиологи еще только начинают понимать, как человеческий мозг справляется с гораздо более простыми задачами. Понятно, однако, что интуиция, как бы она ни работала, существует благодаря структуре мозга и его взаимодействию с внешним миром.
Зачастую главное, чем помогает в работе интуиция, — она подсказывает, где у задачи слабые места, где к ней можно подступиться с максимальными шансами на успех. Математическое доказательство подобно сражению или, если вы предпочитаете менее воинственные сравнения, шахматной партии. Как только потенциально слабое место выявлено, исследователь бросает в бой (т. е. на его изучение) все свои возможности исследователя, весь математический аппарат, которым владеет. Как Архимед нуждался в точке опоры, чтобы перевернуть Землю, так и математик-исследователь нуждается в рычагах воздействия на задачу. Одна-единственная ключевая идея может раскрыть ее, сделать доступной для стандартных методов. Ну а после этого довести решение задачи до конца — дело техники.
Мой любимый пример рычагов такого рода — задачка, которая не имеет особого математического смысла, но помогает объяснить важный момент. Предположим, у вас есть шахматная доска из 64 клеток и набор костяшек домино, каждая из которых по размеру точно закрывает две соседние клетки доски. Очевидно, 32 костяшек достаточно, чтобы закрыть всю доску. Но теперь представьте, что из доски удалили две противоположных по диагонали угловых клетки, как показано на рис. 1. Можно ли закрыть оставшиеся 62 клетки при помощи 31 костяшки? Попробовав, вы поймете, что ничего не получается. С другой стороны, явных причин, по которым это задание можно было бы счесть невыполнимым, вроде бы тоже не видно. Но ровно до тех пор, пока вы не сообразите, что каждая костяшка домино, как их ни раскладывай, должна закрывать одну черную и одну белую клетку доски. Вот ваш рычаг, и теперь остается только применить его. Он подразумевает, что любая площадь, закрытая костяшками домино, содержит равное число черных и белых клеток. Но противоположные по диагонали клетки — одного цвета (в данном случае — белые), так что при их удалении возникает фигура, в которой черных клеток на две больше, чем белых. А никакую фигуру такого рода полностью закрыть костяшками невозможно. Наблюдение о том, что любая костяшка домино обязательно закрывает две клетки разного цвета, и есть слабое место этой головоломки. |