Изменить размер шрифта - +
Гипотеза Таниямы-Шимуры стояла перед ним подобно неприступной крепости.

 

В 1986 году Эндрю Уайлс узнал, что Великую теорему Ферма, возможно удастся доказать с помощью гипотезы Таниямы-Шимуры

 

Многие другие математики, в том числе и Джон Коутс, считали любые попытки доказать гипотезу Таниямы-Шимуры безнадежным делом: «Сам я весьма скептически относился к тому, что красивая связь между Великой теоремой Ферма и гипотезой Таниямы-Шимуры действительно приведет к какому-нибудь результату. Должен признаться, я не думал, что гипотеза Таниямы-Шимуры доказуема. Как ни красива эта проблема, решить ее не представлялось возможным. Я полагал, что мне не удастся увидеть ее доказанной при жизни».

Уайлс знал, что шансы на успех у него чрезвычайно малы. Но даже если бы ему не удалось найти доказательство Великой теоремы Ферма, то он не считал бы, что усилия потрачены им напрасно: «Разумеется, гипотеза Таниямы-Шимуры долгие годы оставалась открытой. Ни у кого не было даже намеков на доказательство, но, по крайней мере, эта гипотеза оставалась в основном русле развития математики. Пытаясь найти доказательство гипотезы Таниямы-Шимуры, я мог получить результаты, которые, хотя они и не позволят решить проблему в целом, все же можно будет считать хорошей математикой. Я не напрасно потрачу время. Итак, роман с Ферма, длившийся всю мою жизнь, сколько я себя помню, дополнился проблемой, которую высокие профессионалы считали неразрешимой».

 

На чердаке отшельника

 

В начале XX века великого математика Давида Гильберта спросили, почему он никогда не пытался доказать Великую теорему Ферма. На это Гильберт ответил: «Прежде чем начать, я должен был бы затратить года три на усиленную подготовку, а у меня нет столько времени, чтобы так расточительно расходовать его на решение проблемы, которое может закончиться неудачей». Уайлс сознавал, что для того, чтобы иметь хоть малейшую надежду найти доказательство, ему сначала необходимо с головой погрузиться в проблему, но, в отличие от Гильберта, был готов пойти на риск. Уайлс прочитывал все новейшие номера математических журналов и осваивал самые последние математические методы. Собирая оружие, необходимое для предстоящей битвы, Уайлс провел следующие восемнадцать месяцев, знакомясь даже с самыми незначительными результатами или методами, имевшими отношение к эллиптическим кривым и модулярным формам. Надо сказать, что, по его прикидкам, любая сколько-нибудь серьезная попытка доказательства вполне могла потребовать от математика-одиночки десятилетних усилий.

Уайлс отказался от всего, что не было напрямую связано с доказательством Великой теоремы Ферма. Он перестал принимать участие в нескончаемой веренице конференций и симпозиумов. Оставаясь сотрудником математического факультета Принстонского университета, Уайлс продолжал проводить учебные семинары, читать лекции для студентов и руководить курсовыми и дипломными работами.

«Я имел обыкновение уединяться в кабинете, где пытался найти фрагменты решений тех или иных математических проблем, которые должны были стать частями единой мозаики… Эти фрагменты я пытался сопоставить с каким-нибудь прежним широким, на уровне понятий, пониманием различных разделов математики, которые могли бы прояснить ту проблему, над которой я размышлял. Иногда приходилось идти и заглядывать в какую-нибудь книгу, чтобы узнать, как эта задача решена там. Иногда это требовало слегка изменить известный результат, проделать какие-то дополнительные вычисления. Иногда я приходил к заключению, что все сделанное раньше совершенно бесполезно. В этом случае мне приходилось изобретать что-нибудь совершенно новое. Неизвестно, откуда что бралось.

По существу, это одна из загадок мышления. Часто для того, чтобы привести в порядок мысли, бывает необходимо попытаться изложить их в письменном виде. Когда вы по-настоящему заходите в тупик, когда речь идет о настоящей проблеме, которую требуется решить, обычное традиционное математическое мышление не может помочь вам ничем.

Быстрый переход