Однако, целые числа не образуют группу относительно операции деления, поскольку при делении одного целого числа на другое результат не обязательно будет целым числом, например, 4:12=1/3.
Дробь 1/3 — не целое число, оно выходит за пределы исходного множества целых чисел. Но если рассматривать более широкое множество так называемых рациональных чисел, то замкнутость относительно операции деления восстанавливается: рациональные числа замкнуты относительно деления. Даже после того, как эти слова произнесены, необходимо соблюдать осторожность, так как деление на нуль (элемент множества рациональных чисел) приводит к различным математическим кошмарам. Поэтому точнее было бы утверждение: рациональные числа без нуля замкнуты относительно деления. Во многих отношениях замкнутость аналогична понятию полноты, описанному в предыдущих главах.
Целые числа и рациональные числа, или дроби, содержат бесконечное число элементов, и можно было бы предположить, что чем больше группа, тем больший интерес она вызывает к себе в математике. Но Галуа придерживался философии «чем меньше, тем лучше» и показал, что небольшие тщательно построенные группы могут обладать весьма богатым набором свойств. Вместо того, чтобы воспользоваться бесконечными группами, Галуа начал с конкретного уравнения и построил свою группу из нескольких решений этого уравнения. Именно группы, образованные из решений уравнений пятой степени, позволили Галуа получить результаты об этих уравнениях. Через полтора столетия Уайлс воспользовался теорией Галуа как одной из основ для своего доказательства гипотезы Таниямы-Шимуры.
* * *
Чтобы доказать гипотезу Таниямы-Шимуры, математикам было необходимо показать, что каждое из бесконечного множества эллиптических уравнений может быть поставлено в соответствие с какой-то модулярной формой. Первоначально математики пытались показать, что целая молекула ДНК одного эллиптического уравнения (E-ряд) может быть поставлена в соответствие целой молекуле ДНК (M-ряд) одной модулярной формы. Хотя такой подход вполне разумен, никому не удалось повторить процесс установления такого соответствия для бесконечно многих эллиптических уравнений и модулярных форм.
Уайлс избрал совершенно другой подход к этой проблеме. Вместо того, чтобы пытаться установить соответствие между всеми элементами E-ряда и всеми элементами M-ряда, а затем переходить к следующим рядам, он попытался установить соответствие между одним членом E-ряда и одним членом M-ряда, а затем переходить к следующей паре элементов. Иначе говоря, каждый E-ряд состоит из бесконечной последовательности элементов, своего рода генов, образующих ДНК эллиптического уравнения, и Уайлс хотел показать, что первый ген в каждом E-ряде можно поставить в соответствие первому гену какого-то M-ряда. Затем он доказал бы, что второй член E-ряда может быть поставлен в соответствие второму члену M-ряда, и т. д.
При традиционном подходе мы получили бы бесконечную задачу, состоявшую в том, что даже если бы удалось доказать соответствие между всеми членами каких-то конкретных E- и M-рядов, то и в этом случае осталось бы доказать, что такое соответствие может быть установлено между бесконечно многими остальными E-рядами и M-рядами. Избранная Уайлсом тактика обладала одним большим преимуществом.
Решающее значение имело то обстоятельство, что в методе Уайлса члены в E-рядах обладают естественным упорядочением, поэтому после того, как установлено соответствие между первыми членами (E<sub>1</sub>=M<sub>1</sub>), следующим шагом является установление соответствия между вторыми членами (E<sub>2</sub> = M<sub>2</sub>), и т. д.
Именно такой естественный порядок был необходим Уайлсу, чтобы создать доказательство по индукции. Прежде всего Уайлсу было необходимо доказать, что первый элемент E-ряда можно поставить в соответствие первому элементу некоторого M-ряда. Затем ему было необходимо доказать, что если соответствие между первыми элементами рядов установлено, то оно будет установлено и между вторыми, третьими и т. |