Изменить размер шрифта - +
И Паскаль, и Ферма сумели независимо решить задачу Гомбо, но их сотрудничество ускорило решение и позволило им глубже исследовать другие, более тонкие и трудные, вопросы теории вероятностей.

Задачи теории вероятностей иногда кажутся парадоксальными, потому что математическое решение (правильный ответ) нередко не согласуется с интуицией. Такие провалы интуиции могут показаться удивительными, поскольку «выживание наиболее приспособленного» должно было оказать сильное эволюционное давление на развитие мозга, способного от природы анализировать проблемы теории вероятностей. Можно представить себе наших предков, подкрадывающихся к олененку и решающих, стоит или не стоит им нападать на него. Велик ли риск, что олень бросится защищать свое чадо и нападет на обидчика? С другой стороны, какова вероятность, что представится более удобный случай добыть свежее мясо на обед, если нападение на олененка считать излишне рискованным? Талант к оценке вероятностей должен быть неотъемлемой частью нашей генетической структуры, и тем не менее наша интуиция нередко заставляет нас делать неверные заключения.

Например, в сильнейшем противоречии с интуицией находится задача о вероятности совпадения дней рождения. Представьте себе футбольное поле, на котором находятся 23 человека: игроки двух команд (22 человека) и судья. Какова вероятность, что у двух из них дни рождения совпадают?

Поскольку речь идет о 23 людях, а выбирать приходится из 365 дней, кажется маловероятным, чтобы у кого-нибудь из тех, кто находится на футбольном поле, дни рождения совпали. Если попросить кого-нибудь оценить вероятность совпадения числом, то большинство людей оценят эту вероятность не выше 10 %. В действительности же правильный ответ гласит: чуть выше 50 %. Иначе говоря, если взвешивать на весах теории вероятностей, то вероятность совпадения дней рождения все-таки чуть-чуть больше, чем вероятность того, что никакие два дня рождения не совпадают.

Причина столь высокой вероятности совпадения двух дней рождения заключается в том, что число способов, которыми людей можно разбить на пары, гораздо больше числа самих людей. Если требуется найти совпадающие дни рождения, то необходимо знать не количество людей, а число пар, на которые их можно разбить. Так как число людей на футбольном поле равно 23, то число пар равно 253. Например, первого из находящихся на футбольном поле можно включать в одну пару с любым из 22 других, что дает для начала 22 пары. Второму можно подобрать в пару любого из 21 остальных людей на поле (поскольку мы уже сосчитали второго один раз, когда подсчитывали число пар с участием первого, число пар со вторым следует уменьшить на единицу), и мы получаем еще 20 пар. Продолжая рассуждать так же, мы в итоге получим 253 пары.

То, что вероятность совпадения дней рождения в группе из 23 людей оказывается больше 50 %, противоречит интуиции. Тем не менее с точки зрения математики ответ правильный. Именно на такие «странные», противоречащие интуитивным, представления опираются букмекеры и игроки, используя опрометчивость азартных людей. В следующий раз, когда вам случится быть на заседании или званом обеде, на котором окажется 23 участника, можете заключить пари, что среди присутствующих найдутся два человека, дни рождения которых совпадают. Следует иметь в виду, что в группе из 23 человек вероятность совпадения двух дней рождения лишь слегка превышает 50 %, но с увеличением численности группы вероятность совпадения быстро увеличивается.

Ферма и Паскаль заложили основы тех правил, которым подчиняются все азартные игры и которые могут быть использованы игроками, чтобы выработать идеальную стратегию игры и стратегию заключения пари. Кроме того, обнаруженные Ферма и Паскалем законы теории вероятностей нашли приложения в целом ряде областей человеческой деятельности — от спекулятивной игры на фондовой бирже до оценивания вероятности ядерной катастрофы.

Паскаль был даже убежден, что мог бы применить свои теории для обоснования веры в Бога.

Быстрый переход