Изменить размер шрифта - +
Математика питает непреодолимое отвращение к противоречиям. Отсюда делается заключение, что исходная теорема не может быть неверна, т. е. она истинна.

Английский математик Г.Г. Харди кратко выразил дух доказательства от противного в своей книге «Апология математика»: «Reductio ad absurdum, столь любимое Евклидом, — одно из самых прекрасных орудий математика. Это гораздо более тонкий гамбит, чем любая шахматная партия: шахматист может пожертвовать пешкой или даже какой-нибудь фигурой, но математик жертвует партией».

Одно из наиболее известных доказательств Евклида от противного — доказательство существования так называемых иррациональных чисел. По-видимому, иррациональные числа первоначально были открыты пифагорейцами несколькими столетиями раньше, но понятие иррационального числа вызывало у Пифагора столь сильное отвращение, что он отрицал существование иррациональных чисел.

Когда Пифагор провозгласил, что Вселенной управляют числа, он имел в виду только целые числа и их отношения, называемые рациональными числами. Иррациональное же число не является ни целым, ни дробью, и именно это обстоятельство казалось Пифагору отвратительным. Действительно, иррациональные числа настолько необычны, что их невозможно записать в виде конечных десятичных дробей или бесконечных периодических дробей. Например, такая бесконечная периодическая непрерывная дробь, как 0,111111…, — число весьма и весьма обыкновенное: оно равно дроби 1/9. То, что единица повторяется неограниченно много раз, означает лишь, что данное десятичное число обладает очень простой и регулярной структурой. В свою очередь такая строгая регулярность, несмотря на неоднократное (в действительности — бесконечнократное) повторение, означает, что данную бесконечную десятичную дробь можно записать в виде обыкновенной дроби. Но если вы захотите представить иррациональное число в виде десятичной дроби, то у вас получится бесконечная дробь, структура которой не будет регулярной и сколько-нибудь обозримой.

Для Пифагора идея красоты математики состояла в том, что рациональные числа (целые числа и обыкновенные дроби) позволяют объяснить все явления в природе. Эта путеводная философия ослепила Пифагора, не давая ему увидеть существование иррационального числа и, возможно, даже привела к казни одного из его учеников. Легенда рассказывает о том, что один из учеников Пифагора по имени Гиппас на досуге забавлялся с числом √2, пытаясь найти эквивалентную ему обыкновенную дробь. В конце концов он понял, что такой дроби не существует, т. е. √2 — иррациональное число. Совершив столь важное открытие, Гиппас, должно быть, пришел в неописуемый восторг, чего нельзя было сказать о его учителе. Пифагор определял все происходящее в мире с помощью рациональных чисел, и существование иррациональных чисел ставило под сомнение его идеал. Открытие Гиппаса могло бы повлечь за собой период споров и сомнений, и Пифагору пришлось бы признать новый источник чисел. Но Пифагор не хотел признать свои заблуждения и в то же время не мог разрушить аргументацию Гиппаса силой логики. К своему вечному позору, он приговорил Гиппаса к смерти через утопление.

Отец логики и математического метода прибег к силе, но так и не признал, что был неправ. Это было его самым позорным деянием и, возможно, величайшей трагедией греческой математики. Иррациональные числа обрели «права гражданства» в математике только после смерти Пифагора.

Введение иррациональных чисел означало гигантский прорыв в математике. Математики получили возможность бросить взгляд за пределы целых чисел и обыкновенных дробей, оглядеться и открывать или, быть может, изобретать новые числа. По словам математика XIX века Леопольда Кронекера: «Бог создал целые числа; все остальное дело рук человеческих».

Самым замечательным иррациональным числом по праву считается число π. В школе его иногда заменяют приближенным значением 31/7 или 3,14.

Быстрый переход