Нуль играет решающую роль при устранении неоднозначности. Даже вавилоняне, жившие за три тысячи лет до н. э., оценили использование нуля во избежание путаницы, и греки восприняли идеи вавилонян, используя кружок, похожий на тот символ нуля, который мы используем сегодня. Однако нуль выполняет еще одну, более деликатную и значительную, функцию, которую полностью оценили лишь через несколько столетий индийские математики. Они осознали, что нуль не только позволяет заполнить пробел между значащими цифрами, но и существует сам по себе, независимо от других чисел. Так абстрактное понятие «ничего» впервые обрело свой осязаемый символ.
Современному читателю изобретение нуля может показаться тривиальным шагом, но не следует забывать о том, что именно вторая, более глубокая функция нуля ускользнула от внимания всех древнегреческих философов, в том числе Аристотеля. По мнению Аристотеля нуль должен был быть объявлен вне закона, поскольку он нарушал единообразие других чисел: деление обыкновенного числа на нуль приводило к непостижимому результату. К VI веку индийские математики уже не заметали проблему нуля под ковер, а индийский ученый VII века Брахмагупта оказался уже настолько искушенным, что использовал деление на нуль для определения бесконечности.
В то время как Европа оставила благородный поиск истины, Индия и Аравия укрепляли знание, тайно похищенное на пепелище Александрии, и излагали его на новом, более выразительном языке. Индийские и арабские математики не только пополнили математический словарь нулем, но и заменили примитивные греческие символы и неуклюжие римские числительные общепринятой и ныне системой счисления. Последнее достижение, как и введение нуля, может показаться ничтожно малым продвижением, но попробуйте умножить CLV на DCI, и вы оцените значение этого прорыва: эквивалентная задача умножения 155 на 601 гораздо проще. Развитие любой научной дисциплины зависит от ее способности развивать свои идеи и обмениваться ими, а это в свою очередь определяется научным языком, который должен быть достаточно подробным и гибким. Идеи Пифагора и Евклида отличались большим изяществом, несмотря на грубое и неуклюжее оформление, но после перевода в арабскую символику они расцвели и принесли много плодов, породив новые и богатые понятия.
В X веке французский ученый Герберт Аврилакский перенял новую систему счисления у испанских мавров и, занимаясь преподаванием в церквах и школах по всей Европе, внедрил новую систему на Западе. В 999 году он был избран папой Сильвестром II, и это позволило ему способствовать еще большему распространению новых индо-арабских цифр. И хотя необычная эффективность новой системы счисления произвела подлинный переворот в выполнении всех счетных операций и была быстро воспринята купцами, она слабо способствовала оживлению европейской математики.
Жизненно важным, поворотным пунктом в развитии западной математики стал 1453 год, когда турки разграбили Константинополь. За прежние годы рукописи, спасенные после уничтожения Александрии, нашли убежище в Константинополе, и теперь снова оказались под угрозой уничтожения. Византийские ученые бежали на запад, прихватив с собой те тексты, которые могли унести. Пережив нападения Цезаря, епископа Теофила, халифа Омара, а теперь еще и турок, несколько драгоценных книг «Арифметики» Диофанта проделали обратный путь в Европу. Судьба распорядилась так, чтобы сочинение Диофанта оказалось на письменном столе Пьера де Ферма.
Рождение проблемы
Судебные обязанности Ферма поглощали значительную часть его времени, а те скудные часы досуга, которые все же оставались, Ферма целиком посвящал математике. Отчасти это объяснялось тем, что во Франции XVII века не поощрялись светские связи судей.
Считалось, что друзья и светские знакомые судей сами могут оказаться под судом, и тогда личные связи могут помешать осуществлению правосудия. |