Изменить размер шрифта - +

Очень многие физические и химические свойства материи меняются в зависимости от температуры. Возьмем в качестве простого примера объем совершенного газа (с которым мы встречались, когда говорили о законе Шарля). Изменение температуры при неизменном давлении вызывает изменение его объема. И было бы очень удобно, если бы объем менялся строго пропорционально температуре, то есть удвоение одного отвечало бы удвоению другой.

Но если пользоваться шкалой Цельсия, то пропорциональности не получается. При увеличении температуры, скажем, с 20 до 40 °C объем совершенного газа не удваивается. Он просто увеличивается на <sup>1</sup>/<sub>11</sub> часть первоначального объема. Напротив, если температуру отсчитывать по Кельвину, то удвоение объема в самом деле соответствует удвоению температуры. При возрастании ее с 20 до 40°К, затем до 80°К, до 160°К и так далее объем газа каждый раз будет удваиваться.

Короче говоря, в шкале Кельвина более удобно описывать поведение всего, что есть во Вселенной (и ее самой) при изменениях температуры, чем в шкале Цельсия или любой другой.

Здесь же я хочу сказать о том, что, охлаждая любое вещество, физик отнимает у молекул какую-то кинетическую энергию. Все когда-либо изобретенные для этой цели устройства могут изъять лишь часть кинетической энергии, как бы мало ее ни было. При каждой попытке охладить вещество кинетической энергии остается в нем все меньше и меньше, но всю ее вещество никогда не сможет отдать охлаждающему устройству.

По этой причине ученые не достигли абсолютного нуля и не надеются сделать это, хотя они уже творят чудеса, достигая температур порядка 0,00001°К.

Во всяком случае, мы обнаружили здесь еще один предел, ответив на вопрос: «Как холодно самое холодное?»

 

 

* * *

 

Но предел холода — это скорее «глубина самого глубокого», а меня интересует «высота самого высокого», то есть вопрос, нет ли предела горячему и если есть, то где он.

Обратимся еще раз к кинетической энергии молекул. Элементарная физика учит, что кинетическая энергия Е движущейся частицы равна <sup>1</sup>/<sub>2</sub>mv<sup>2</sup>, где m — масса частицы, a v — ее скорость. Решив уравнение Е = <sup>1</sup>/<sub>2</sub>mv<sup>2</sup> относительно v, мы получим

 (1)

Но количество кинетической энергии, как я уже упоминал, можно измерить температурой T. Поэтому в формуле (1) можно вместо Е поставить Т (я также изменю постоянную, чтобы получилось правильное число в тех единицах измерения, которыми нам предстоит пользоваться). Итак,

 (2)

Если в этой формуле температуру Т брать в градусах Кельвина, а массу частицы m — в атомных единицах масс, то средняя скорость частиц v получится в километрах в секунду.

Рассмотрим, например, некий объем газообразного гелия. Он состоит из отдельных атомов гелия, причем масса каждого из них равна 4 в атомных единицах. Пусть его температура равна температуре таяния льда (273°К). Тогда в формуле (2) на место Т станет число 273, а на место m — число 4. Подсчитав результат, мы узнаем, что средняя скорость атомов гелия при температуре таяния льда равна 1,31 км/сек.

Так же вычисляются скорости при других значениях Т и m. Скорость молекул кислорода (масса равна 32) при комнатной температуре (300°К) равна , то есть 0,48 км/сек, скорость молекул двуокиси углерода (масса 44) при температуре кипения воды (373°К) равна 0,46 км/сек и так далее.

Формула (2) говорит нам, что при любой данной температуре чем легче частица, тем быстрее она движется. Она также показывает, что при абсолютном нуле (T = 0) скорость любого атома или молекулы, каковы бы ни были их массы, равна нулю. Это еще один путь убедиться в абсолютности абсолютного нуля.

Быстрый переход