Это еще один путь убедиться в абсолютности абсолютного нуля. Абсолютный нуль — это точка абсолютного (почти абсолютного) покоя атомов и молекул.
Но если нулевая скорость молекул и атомов — нижний предел температуры, то нет ли у нее и верхнего предела? Разве скорость света, о чем мы уже говорили в начале статьи, не является верхним пределом скорости? Когда температура поднимается так высоко, что v в формуле (2) достигнет скорости света и уже не сможет подняться выше, разве мы не достигнем абсолютной вершины, где настолько горячо, что уж горячее быть не может? Давайте предположим, что так и есть, и посмотрим, что из этого получится.
* * *
Перепишем формулу (2) так, чтобы можно было подсчитывать прямо. У нас получится
T = 40mv<sup>2</sup>. (3)
Коэффициент 40 нужно брать только в том случае, когда мы пользуемся шкалой Кельвина для температуры и километрами и секундами для скорости.
Возьмем величину скорости молекул v сразу равной максимальной возможной скорости, то есть 299 779 км/сек — скорости света. Тогда мы получим, по-видимому, максимально возможную температуру (T<sub>макс</sub>).
Т<sub>макс</sub> = 3 600 000 000 000 m. (4)
Но теперь нужно знать величину m (массу частиц). Чем выше значение m, тем выше максимальная температура.
А при температурах, исчисляемых миллионами градусов, все молекулы и атомы рассыпаются, остаются голые ядра. При температурах в сотни миллионов градусов уже возможны реакции слияния простых ядер в сложные. При еще более высоких температурах должен происходить обратный процесс: все ядра должны развалиться на простые протоны и нейтроны.
Итак, надо думать, что где-то около максимально возможной температуры (а она, по-видимому, лежит далеко за триллионом градусов) существуют только свободные протоны и нейтроны. Их массы в атомной шкале равны единице. Таким образом, с точки зрения формулы (4) мы делаем вывод, что максимально возможная температура равна 3 600 000 000 000°К.
Но действительно ли мы должны принять этот вывод?
Увы, надо признаться, что во всем доказательстве начиная уже с формулы (3) была ошибка. Я предполагал, что значение m постоянно, то есть если уж атом гелия имеет массу, равную 4, то он сохраняет ее неизменной при любых обстоятельствах. Вообще так и было бы, если бы взгляды Ньютона на Вселенную были абсолютно правильны. Но в ньютоновской Вселенной нет такой вещи, как максимальная скорость, и, следовательно, температура не может иметь верхнего предела.
В эйнштейновском понимании Вселенной верхний предел скорости установлен, следовательно, есть и надежда определить верхний предел температур, но масса, по Эйнштейну, не постоянна. Масса любого предмета (какой бы ничтожной при обычных условиях она ни была, лишь бы нулевой) растет с повышением скорости, становясь бесконечно большой в пределе при скорости света (коротко это можно записать так: «Масса становится бесконечно большой при световой скорости»). При обычных скоростях, скажем не более нескольких тысяч километров в секунду, масса возрастает настолько незначительно, что добавку к обычной массе покоя учитывают разве что в самых точных расчетах.
Однако, когда речь идет о скоростях, почти равных или равных скорости света, масса m в формуле (4) бесконечно возрастает и становится неограниченно большой, какую бы частицу ни взять. Следовательно, то же самое происходит и с T<sub>макс</sub>. Ни в ньютоновской, ни в эйнштейновской Вселенной нет предела увеличению температуры. Здесь нет наивысшей высоты самого высокого.
Часть IV
Астрономия
13. Ну и температура!
Любой уважающий себя ученый или просто человек, близкий к науке (я говорю о близких к науке, чтобы не оставить за бортом самого себя), мечтает оставить в ней заметный след. |