Возникновение случайных симметрий обусловлено тем фактом, что приемлемые теории физики элементарных частиц, как правило, оказываются чрезвычайно простыми. Именно по этой причине нужно как-то решать проблему бессмысленных бесконечностей, о которой я упоминал выше. В теориях, которые относятся к достаточно простым, от таких бесконечностей можно избавиться с помощью операции переопределения, или перенормировки, конечного набора физических констант, определяющих массы и заряды. В таких простых теориях, названных перенормируемыми, в любой заданный момент времени в заданной точке пространства взаимодействовать может только небольшое число частиц, и в этом случае энергия взаимодействия зависит от движения и спина частиц только простым образом.
Долгое время многие из нас считали, что единственным возможным способом исключения неподдающихся бесконечностей являются такие перенормируемые теории. Из-за этого возникла серьезная проблема, поскольку успешная теория гравитации Эйнштейна — общая теория относительности — не является перенормируемой. В 1970-х гг. стало понятно, что существуют условия, когда допустимы неперенормируемые теории. При этом предполагалось, что относительно сложные взаимодействия, из-за которых теории становятся неперенормируемыми, должны подавляться в том случае, когда они обусловлены некоторым неизвестным новым физическим явлением, проявляющимся на масштабах много меньше тех, с которыми мы имеем дело в известных нам физических процессах. На самом деле, гравитация очень сильно подавлена — сейчас это самый слабый тип взаимодействия элементарных частиц из всех известных нам. Но даже при этих условиях, поскольку неперенормируемые взаимодействия слабы, физики могут пренебречь ими и тем не менее получить достоверные приближенные результаты.
И это здорово. Это значит, что существует небольшое количество перенормируемых теорий, которые нужно рассматривать как хорошее приближение к описанию физического мира.
Далее, так вышло, что в условиях ограничений, накладываемых лоренц-инвариантностью и точными локальными симметриями Стандартной модели, наиболее общая перенормируемая теория сильного и электромагнитного взаимодействий просто оказывается недостаточно сложной, чтобы описать нарушения зеркальной симметрии и симметрии материи и антиматерии. Таким образом, эти симметрии электромагнитного и сильного ядерного взаимодействий оказываются случайными, не имеющими отношения к тем симметриям, которые присущи физическому миру на фундаментальном уровне. Слабое ядерное взаимодействие не обладает зеркальной симметрией или симметрией материи и антиматерии, поскольку нет ни одной причины, по которой оно должно было бы ими обладать. Вместо вопроса о том, что нарушает зеркальную симметрию, нам следует поставить вопрос, почему вообще существуют зеркальная симметрия и симметрия материи и антиматерии. И теперь мы это знаем.
Протон-нейтронная симметрия объясняется аналогичным образом. Стандартная модель на самом деле рассматривает не протоны и нейтроны, а частицы, из которых они состоят, — кварки и глюоны. Протон состоит из двух u-кварков и одного d-кварка; нейтрон состоит из двух d-кварков и одного u-кварка. Оказалось, что в самой общей перенормируемой теории кварков и глюонов, отвечающей точным симметриям Стандартной модели, единственным фактором, который может нарушить протон-нейтронную симметрию, являются массы кварков. Массы u- и d-кварков не одинаковы — d-кварк почти в два раза тяжелее u-кварка, — поскольку нет причин, вследствие которых они должны быть равны. Но величина обеих масс чрезвычайно мала: масса протонов и нейтронов в основном определяется сильным ядерным взаимодействием, а не массой кварков. Таким образом, в той степени, в которой можно пренебречь массой кварков, мы получаем случайную приближенную симметрию между протонами и нейтронами. Киральная симметрия и симметрия восьмеричного пути возникают аналогичным случайным образом.
Итак, зеркальная и протон-нейтронная симметрии, а также их обобщение являются вовсе не фундаментальными, но всего лишь случайными следствиями более глубинных принципов. |