Изменить размер шрифта - +
Но в новой квантовой механике, казалось, потерян сам детерминизм законов физики.

Все казалось очень странным. В своем письме Борну, написанном в 1926 г., Эйнштейн жаловался: «Квантовая механика очень впечатляет. Но внутренний голос говорит мне, что это не есть что-то реальное. Теория дает хорошие результаты, но вряд ли она приблизит нас к разгадке секрета Бога. Я абсолютно убежден, что Он не играет в кости». Еще в 1964 г. в своих Мессенджеровских лекциях, прочитанных в Корнеллском университете, Ричард Фейнман сокрушался: «Я думаю, с уверенностью могу сказать, что никто не понимает квантовую механику». С появлением квантовой механики разрыв с прошлым был столь резким, что все прежние физические теории стали называться «классическими».

Для большинства задач странность квантовой механики не имеет значения. Физики научились использовать ее для выполнения все более точных расчетов энергетических уровней атомов и для расчета вероятностей рассеяния частиц при столкновениях. Лоуренс Краусс назвал квантово-механический расчет некоторого эффекта в спектре атома водорода «лучшим, самым точным предсказанием во всей науке». Физик Джино Сегре составил список задач, которые были решены с помощью квантовой механики на ранних этапах ее развития. В этот список вошли задачи о связи атомов в молекулах, о радиоактивном распаде атомного ядра, об электрической проводимости, магнетизме и электромагнитном излучении. Позже приложения квантовой механики распространились на теоретическое описание полупроводников и сверхпроводимости, нейтронных звезд и белых карликов, ядерных сил и элементарных частиц. Даже самые оригинальные и смелые современные теории, например теория струн или хаотическая теория инфляции, укладываются в рамки квантовой механики.

Многие физики пришли к выводу, что реакция Эйнштейна, Фейнмана и других на непривычные аспекты квантовой механики была избыточной. Когда-то я тоже так считал. В конце концов, теории Ньютона также были неприятны для многих из его современников. Ньютон ввел понятие, которое многие его критики восприняли как некую потустороннюю силу. Речь идет о силе гравитации, которая никак не соотносилась с реальными вариантами взаимодействия и которую невозможно было объяснить с позиций философии или чистой математики. Кроме того, его теории нивелировали главную цель Птолемея и Кеплера — расчет размеров планетарных орбит из первых принципов. Однако в итоге противостояние идеям Ньютона сошло на нет. Ньютон и его последователи добились успеха не только в описании движения планет и падающих яблок, но и в описании движения комет и других небесных тел, а также формы Земли и прецессии оси ее вращения. К концу XVIII в. этот успех доказал справедливость ньютоновских теорий движения и гравитации, по крайней мере, как удивительно точных приближений. Очевидно, будет ошибкой строго требовать, чтобы новые физические теории отвечали некоторому предвзятому философскому стандарту.

В квантовой механике состояние системы описывается не через задание положения и скорости каждой отдельной частицы и не через амплитуду и частоту различных полей, как в классической физике. Напротив, состояние любой системы в любой момент времени описывается волновой функцией — по существу, множеством чисел, по одному числу на каждую возможную конфигурацию системы. Если система представляет собой отдельную частицу, тогда каждому возможному положению частицы в пространстве соответствует свое число. Это похоже на описание звуковой волны в классической физике, отличие только в том, что для звуковой волны в каждой точке пространства задано давление воздуха, тогда как при описании состояния частицы в квантовой механике значение волновой функции в заданной точке соответствует вероятности нахождения частицы в этой точке. Что в этом такого ужасного? Несомненно, для Эйнштейна и Шрёдингера стало трагической ошибкой их самоустранение от использования квантовой механики и самоизоляция от впечатляющего прогресса, достигнутого другими учеными.

Быстрый переход