Изменить размер шрифта - +

Это означает, что стадия красного гиганта долго длиться не может, в звездном, конечно, масштабе. (В масштабе человека это большой срок, ведь эта стадия может длиться один-два миллиарда лет.) Вот почему в небе относительно редко сталкиваешься с красным гигантом. Большинство звезд либо еще не достигло стадии красного гиганта, либо уже эту стадию миновало. В галактике. красных гигантов всего около 1 %, т. е. примерно 2,5 млрд, и, конечно, в нашем районе Галактики мы можем видеть только часть их, хотя, если б не пылевые облака, они должны были бы видеться на очень больших расстояниях.

Ядра в центре красного гиганта продолжают слияние до тех пор, пока температура там уже не станет достаточно высокой для новых ядерных превращений. Температура в самых крупных звездах может подняться чрезвычайно высоко, но даже при этом синтез может идти только до образования ядер железа.

Появление ядер железа — это уже тупик. Вне зависимости от того, разбиваются ли ядра железа на более мелкие или, напротив, сливаются в более крупные ядра, никакой энергии при этом не возникает.

В любом из этих случаев энергия должна подводиться извне. Мы можем считать, что ядра железа — это окончательный «шлак», оставшийся от реакций синтеза в недрах звезды. Достигло ли ядро красного гиганта температуры, за которой его масса уже не в состоянии удержать себя, или в нем уже начался синтез ядер железа — конец один: ядерный пожар угасает и уже ничто не может удержать звезду в расширенном состоянии в борьбе с собственной силой тяготения. И она «опадает» (коллапсирует), притом очень быстро.

При катастрофическом сжатии (коллапсе) звезда нагревается, и часть водорода, еще остающаяся на ее поверхности, может получить нагрев и сжатие, достаточные для вспышки ядерного синтеза. Происходит взрыв, при котором часть звездного вещества выбрасывается в пространство, и вокруг коллапсировавшей звезды может возникнуть расширяющаяся сфера газа и пыли.

Некоторые из видимых нами звезд находятся именно в таком состоянии. Расширяющаяся газовая сфера подсвечивается звездой, и мы можем наблюдать ее, особенно хорошо по краям, где луч зрения проходит через ее наибольшую толщину. Опавшая звезда выглядит так, словно она окружена дымчатым кольцом.

Газопылевые облака, встречающиеся в межзвездном пространстве, называются «небула» (от латинского слова «облако»). Когда такое облако, или туманность, имеет вид кольца, обволакивающего звезду и напоминающего орбиту планеты, мы называем его планетарной туманностью. Известно ~1000 планетарных туманностей, наиболее знаменитая из них туманность Кольцо в созвездии Лиры.

В центре каждой планетарной туманности помещается очень горячая бело-голубая звезда (предположительно вновь образовавшийся белый карлик), излучение которой продолжает выталкивать заряд газов наружу, в пространство. Этот газовый заряд становится по мере расширения все тоньше и слабее, пока наконец не исчезнет в необъятно рассеянной газопылевой среде межзвездного пространства. По прошествии, может быть, 100 000 лет на сцене останется один белый карлик, лишенный последних следов своего туманного ореола, — та стадия, в которой и пребывает теперь Сириус В.

Теперь внутри белого карлика нет никаких ядерных превращений, и потому он навсегда лишен источника тепла. Очень медленно, с течением веков, он остынет. К тому же он излучает так мало света, что перестает быть заметным и становится черным карликом. Однако Вселенная, по-видимому, не так стара, чтобы в ней было много черных карликов, если они вообще существуют.

 

ДВОЙНЫЕ ЗВЕЗДЫ И КОЛЛАПС

 

Теперь, кажется, самое время полюбопытствовать, что же происходит со звездой, когда она становится новой.

Когда коллапсирует красный гигант, то при сжатии водорода в наружных слоях возникает вспышка света. Не должна ли эта вспышка света и означать появление новой?

Ведь при взрыве звезды происходит выброс газа и пыли, а разве не такой выброс наблюдался в Новой Персея и Новой Орла?

Фактически нет.

Быстрый переход