Изменить размер шрифта - +

Но что будет, если белый карлик слишком массивен для своего ранга и обладает, скажем, 1,3 массы Солнца?

Или если его компаньон необычно массивен и, расширяясь, превращается в необычно крупный красный гигант в темпе гораздо скорейшем, чем средний? Или, например, имеют место оба эти случая?

При таких обстоятельствах белый карлик может очень скоро набрать столько массы, что выйдет за предел Чандрасекара, равный 1,44 массы Солнца. Когда это случится, белый карлик уже не сможет поддерживать себя как таковой.

Белый карлик коллапсирует и опадает. Он сжимается чрезвычайно быстро и с огромной силой прижимает ядра углерода и кислорода друг к другу. Весь он охватывается пламенем ядерной реакции, порождающей в кратчайшее время так много энергии, что возникает грандиозный взрыв, когда выделяется за несколько недель столько энергии, сколько наше Солнце выдает за всю свою многомиллиарднолетнюю жизнь.

Одним словом, коллапс белого карлика и ядерный синтез его вещества приводят уже к возникновению не просто новой, а сверхновой типа 1.

Взрыв первого типа разрывает звезду в клочья и может не оставить после себя никакой коллапсирующей звезды — ни белого карлика, ни нейтронной звезды, только вихревое расширяющееся облако пыли и газа. Новая Тихо Браге 1572 г. и Новая Кеплера 1604 г. были, по всей очевидности, сверхновыми типа 1: ни в том, ни в другом случае на их месте не обнаружено никаких нейтронных звезд — остались лишь одни туманности.

Сверхновые типа 2 тоже бывают в самом конце звездной эволюции, но на стадии не так далеко зашедшей, как у сверхновых типа 1. Сверхновая типа 2 возникает в звезде, которая достигла стадии красного гиганта. Однако это случается с крупными звездами, такими, которые минимум в 3–4 раза тяжелее нашего Солнца, и, чем массивнее звезда, тем крупнее бывает красный гигант.

Истинный красный гигант, подобно луковице, состоит из нескольких разных слоев. Наружный слой — это все тот же водород и гелий, т. е. смесь, из которой состоит большинство обычных звезд главной последовательности. За ним идет оболочка, содержащая ядра более массивных атомов, таких, как углерод, азот, кислород и неон. Далее вглубь — третий слой, богатый ядрами натрия, алюминия и магния. За ним — четвертый слой, несущий ядра серы, хлора, аргона и поташа. Пятый слой — само ядро звезды — заключает в себе ядра железа, кобальта и никеля.

Каждый последующий (нижний) слой складывается из продуктов слияния мелких ядер, которые еще имеются в наружном (верхнем) слое. Когда в звезде в ходе ее развития образовалось ядро из железа, никеля и кобальта, ее развитию приходит конец. Любое дополнительное ядерное превращение, связанное с этими ядрами, будь то слияние в более сложные или деление на менее сложные ядра, будет не высвобождать энергию, а, напротив, поглощать ее.

Когда железная сердцевина станет слишком большой, звезда достигает фазы, когда она не может больше вырабатывать достаточно энергии, чтобы удержать себя в раздутом состоянии. Внутренние слои сжимаются катастрофически, и энергия гравитации, освобождаемая при этом, взрывает, выталкивает наружные слои, попутно зажигая в них реакцию синтеза и производя тем самым еще больше энергии. Именно эта дополнительная энергия делает очевидной принадлежность звезды к сверхновой типа 2 и вызывает к жизни даже те ядерные реакции, которые идут с поглощением энергии.

Коллапсированное сжатое ядро такой сверхновой, скорее всего, превращается в нейтронную звезду, даже если его масса (за вычетом исчезнувших после взрыва внешних слоев) достаточно мала, чтобы позволить существование белого карлика. Коллапс звезды так катастрофически скоротечен, что ядро проскакивает «отметку» белого карлика, не успев там задержаться.

 

ЧЕРНЫЕ ДЫРЫ

 

Однако даже в случае сверхновой типа 2 неизбежности образования нейтронной звезды не существует.

Быстрый переход