Мендель показал, что и другие наборы признаков работают таким же образом. Он аккуратно вывел это в своих схемах, которые мы знаем теперь как законы наследственности Менделя. Они говорят о том, что крайние признаки (экстремумы) не пропадают при беспорядочном скрещивании, но стремятся выжить и проявляются вновь и вновь в дальнейших поколениях.
К несчастью, Мендель как ботаник был малоизвестен, к тому же его работы опередили время. Несмотря на опубликованные им эксперименты и выводы, их игнорировали до 1900 г., когда три других ботаника независимо друг от друга вывели те же законы. Они-то и обнаружили, что Мендель опередил их на целое поколение, и каждый из них, тоже независимо, отдал ему должное.
Итак, наиболее уязвимое место в теории Дарвина — предполагаемая тенденция к сглаживанию крайних признаков — было защищено.
И все же, в чем заключается биологическая и химическая природа факторов с точки зрения законов Менделя?
В 1882 г. немецкий анатом Вальтер Флемминг (1843–1905) сообщил о своих исследованиях в области клетки. Он разработал технику воздействия на клетку некоторыми из новых искусственных красителей, недавно полученных химиками. Отдельные краски легко смешивались с одними элементами клетки, но совершенно не реагировали с другими. Одна из красок активнее других окрашивала часть материала внутри ядра. Флемминг назвал этот материал хроматином (от греч. chroma — цвет).
Было известно, что при делении клетки существенным элементом является ее ядро; клетка, из которой удалено ядро, не делится. Флемминг окрасил срез ткани с активно делящимися в ней клетками, и хроматин в каждой из них приобрел окраску. Это окрашивание убило клетки, однако каждая клетка застыла на определенной стадии деления, и в результате получилась как бы серия фотографических стоп-кадров хроматина на разных стадиях процесса. Когда они были поставлены в определенную последовательность, Флемминг получил представление о последовательности событий в этом процессе.
Судя по всему, в ходе деления клетки хроматин собирался в группу маленьких усеченных палочек, соединенных в пары, так что имелось по две от каждого сорта палочек. Эти палочки Флемминг назвал хромосомами (от хромо и греч. soma — окрашенное тело). Хромосомы располагались вдоль центральной оси клетки и раздваивались, и каждая хромосома порождала другую — точную свою копию. И теперь на месте одной хромосомы было уже две пары, т. е. целых четыре.
Затем хромосомы делились так: две из четырех хромосом каждой группы двигались в один конец клетки, а две другие — в другой конец. После этого клетка вытягивалась, делилась на две новые, и каждая из них имела полный набор хромосом, собранных в пары.
В 1887 г. бельгийский биолог Эдуард Джозеф ван Бенеден (1846–1910) сделал еще один шаг в изучении хромосом. Он показал, что отдельные виды имеют определенное число хромосом в клетке. Например, в каждой целой человеческой клетке, как мы теперь знаем, имеется сорок шесть хромосом, собранных в двадцать три пары. В яйцеклетке или сперматозоиде имеется лишь половина набора хромосом, по одной от каждой пары, т. е. яйцеклетка и сперматозоид человека имеют по двадцать три хромосомы.
Когда сперматозоид оплодотворяет яйцеклетку, оплодотворенная яйцеклетка во второй раз получает полный комплект хромосом — по одной от каждой пары отцовских и от каждой пары материнских, т. е. оплодотворенная яйцеклетка человека имеет двадцать три пары хромосом.
В 1902 г., вскоре после того, как были открыты забытые работы Менделя, американский биолог Вальтер Стэнбероу Саттон (1877–1916) показал, что хромосомы ведут себя точно так же, как факторы Менделя, и, по существу, ими и являются. Наследственностью управляют хромосомы.
Конечно, если каждую хромосому рассматривать как несущую в себе только один какой-либо признак, то для объяснения всех унаследованных признаков хромосом просто не хватит. |