Изменить размер шрифта - +

Так что химическая основа всех разновидностей жизни на Земле, а может — и на других планетах должна быть белково-водной (где строением белков управляет сложная система нуклеиновых кислот). Если нам суждено когда-либо встретиться с инопланетными живыми существами, то сейчас нельзя предсказать, будут ли они крылатыми, зеленокожими, десятиногими, яйцеголовыми или двухвостыми; но с большой долей вероятности можно утверждать, что их химическое строение будет белково-водным под управлением нуклеиновых кислот.

Однако что, если жизнь на других планетах не похожа на земную? Это касается, например, планет, находящихся так близко к своему солнцу, что поверхность их разогрета выше точки плавления свинца, или, наоборот, так далеко от своего солнца, что вода на них представлена только в форме непробиваемых ледяных шапок? Обречены ли такие миры на вечную пустоту? Если живая материя в принципе может быть только белково-водной, то, по-видимому, да.

Но так ли это? Есть ли у нас уверенность, что других схем живой материи в принципе не может быть?

Предположим, к примеру, что на планете, на которой нет и никогда не было воды в жидкой форме из-за страшного холода, нашлось вещество, занявшее нишу воды в условиях низкой температуры. На самом деле такое вещество нам известно — это аммиак.

Наверное, все знают нашатырный спирт — прозрачную жидкость, внешне похожую на воду, но имеющую специфический резкий запах. Это водный раствор аммиака.

Сам по себе аммиак при обычных температурах газообразен. Причем это газ слезоточивый и ядовитый. На Земле для того, чтобы он стал жидкостью, его приходится специально охлаждать до -34 °С. И при температуре выше -73 °С он не замерзает. Точный момент его перехода из жидкого в газообразное состояние зависит еще и от такого параметра, как атмосферное давление на планете, но в любом случае он остается жидкостью при температуре градусов на пятьдесят ниже точки замерзания воды.

Холодные планеты нашей собственной Солнечной системы, например Юпитер и Сатурн, имеют много атмосферы, состоящей в основном из водорода и гелия, но содержащей также аммиак и метан. Возможно, подобными атмосферами обладают и некоторые их спутники, и вообще, есть все основания полагать, что любая крупная холодная планета будет иметь такого рода атмосферу.

И химические свойства аммиака очень похожи на химические свойства воды. Химики уже демонстрировали, что поведение веществ при растворении в аммиаке сходно с поведением веществ при растворении в воде, так что белково-аммиачная основа жизни вполне вероятна в тех условиях, где слишком холодно для зарождения жизни белково-водной.

Биохимия, в основе которой лежит такая связка, должна радикально отличаться от всего, что мы знаем. Наши белки, достаточно активные для того, чтобы участвовать в реакциях жизнедеятельности при обычных для Земли температурах, при температурах жидкого аммиака становятся инертными — скорее всего, слишком инертными для того, чтобы соответствовать требованиям, предъявляемым к живой материи. Однако известно, что существуют химические вещества, при температуре жидкой воды слишком активные и слишком нестабильные, чтобы просуществовать дольше секунды. В условиях более низкой температуры они могут оказаться ровно настолько стабильными, чтобы послужить практической основой жизни.

И еще — земные организмы потребляют пищу, содержащую сложные молекулы, богатые атомами углерода и водорода (растения такой пищи не поедают, они сами изготавливают эти сложные молекулы, используя для этого солнечную энергию). Атомы водорода вступают в соединение с атомами кислорода, и высвобождаемая при этом энергия поддерживает жизнь.

Но на холодных планетах кислорода в атмосфере нет. Вместо него есть водород. Возможно, что пищей «аммиачных» существ смогут служить сложные молекулы, богатые углеродом и кислородом, — молекулы такого типа были бы слишком нестабильны, чтобы существовать в условиях земного диапазона температур.

Быстрый переход