А сделал он это, потому что формула энтропии Шеннона выглядит точно так же, как формула энтропии в термодинамике. За исключением знака «минус». То есть, термодинамическая энтропия выглядит как отрицательная энтропия Шеннона и, значит, ее можно трактовать как «утраченную информацию». На эту тему было написано множество статей и книг — к примеру, в них стрела времени объяснялась тем, что Вселенная постепенно теряет информацию. Действительно — заменяя тонкую структуру ячейки ее усредненным значением, мы теряем информацию о ее структуре. А восстановить ее после этого уже нельзя. Что и требовалось доказать — время всегда течет в сторону уменьшения информации.
На самом деле упомянутая связь — это просто выдумка. Да, конечно, формулы выглядят одинаково…, вот только используются они в разных контекстах, совершенно не связанных друг с другом. В знаменитой формуле Эйнштейна, выражающей связь между массой и энергией, символ c обозначает скорость света. А в теореме Пифагора та же буква обозначает одну из сторон прямоугольного треугольника. Хотя буквы в обеих формулах совпадают, никто в здравом уме не станет отождествлять скорость света со сторонами треугольника. Предполагаемая связь между термодинамической энтропией и отрицательной информацией, конечно же, не так легкомысленна. Не совсем так.
Мы уже говорили, что наука — это не неизменная коллекция фактов, и в ней порой возникают разногласия. Одним из них стала та самая связь между термодинамической энтропией и энтропией Шеннона. Вопрос о том, можно ли осмысленно считать термодинамическую энтропию отрицательной информацией, оставался предметом споров в течение многих лет. Эти споры все еще не утихли — например, статьи, написанные компетентными учеными, даже после рецензирования категорически противоречат друг другу.
По-видимому, здесь произошла путаница между формально-математическим выражением «законов» информации и энтропии, физической интуицией, подсказавшей эвристическую интерпретацию этих понятий, и неспособностью осознать важность контекста. Очень много внимания уделяется схожести формул энтропии в теории информации и термодинамике, но контекст, в котором эти формулы используются, теряется из вида. Из-за этой привычки мы стали очень неаккуратно обращаться с некоторыми важными физическими концепциями.
Одно важное различие состоит в том, что термодинамическая энтропия — это величина, характеризующая состояние газа, в то время как информационная энтропия относится к источнику информации, то есть системе, генерирующей целые наборы состояний («сообщения»). Грубо говоря, источник представляет собой фазовое пространство, описывающее последовательные биты сообщения, а конкретное сообщение — траекторию, или путь в этом пространстве. Однако термодинамическая конфигурация — это всего лишь точка фазового пространства. Конкретная конфигурация молекул газа обладает термодинамической энтропией, но у отдельного сообщения нет энтропии Шеннона. Одного этого факта достаточно, чтобы заметить неладное. К тому же в самой теории информации отрицательная энтропия (в информационном смысле) не совпадает с количеством информации, содержащейся «в» сообщении. На самом деле энтропия источника остается неизменной, сколько бы сообщений он не генерировал.
В нашей Вселенной с энтропией связана еще одна загадка. Результаты астрономических наблюдений плохо согласуются со Вторым Законом. Похоже, что в космологических масштабах наша Вселенная со временем становилась сложнее, а не проще. В момент Большого Взрыва материя была распределена довольно равномерно, но с течением времени она становилась все более и более неоднородной, а значит — все более и более сложной. Похоже, что энтропия Вселенной заметно уменьшилась, а вовсе не выросла. Теперь материя образует скопления в самых разных масштабах: камни, астероиды, планеты, звезды, галактики, галактические скопления и сверхскопления и так далее. |