Гёдель поступил в Венский университет и поначалу не мог решить, изучать ему математику или физику. Книга Бертрана Рассела «Введение в математическую философию» побудила его остановиться на математике, а основным научным интересом стала математическая логика. Ключевой момент в его карьере наступил в 1928 г., когда он попал в Болонье на лекцию Давида Гильберта на 1-м Международном конгрессе математиков, проводившемся после окончания Первой мировой войны. Гильберт тогда рассказал о своих взглядах на аксиоматические системы, особенно на их непротиворечивость и полноту. В 1928 г. Гёдель прочел «Принципы математической логики» Гильберта и Вильгельма Аккермана, где излагалась техническая основа Гильбертовой программы разрешения этих вопросов. В 1929 г. он выбрал тему для своей докторской диссертации, которую готовил под руководством Ханса Хана. Он доказал то, что мы сегодня называем теоремой Гёделя о полноте: что исчисление предикатов (глава 14) является полным. То есть любая верная теорема может быть доказана, любая неверная теорема – опровергнута, и никаких других вариантов не существует. Однако исчисление предикатов – очень ограниченная область и не годится в качестве фундамента для всей математики. Программа Гильберта была сформулирована в рамках гораздо более богатой аксиоматической системы.
В том же году Гёдель стал гражданином Австрии. (В 1938 г., когда Германия аннексировала Австрию, его гражданство автоматически сменилось на германское.) В 1930 г. он получил степень доктора. В 1931 г. – разрушил программу Гильберта, опубликовав статью «О формально неразрешимых утверждениях Principia Mathematica и аналогичных систем», где доказывалось, что ни одна система аксиом, достаточно богатая, чтобы формализовать математику, не может быть логически полной, а непротиворечивость такой системы доказать невозможно. (О Principia Mathematica я расскажу вам чуть позже.) В 1932 г. он прошел хабилитацию, а в 1933 г. стал приват-доцентом Венского университета. Мучительные события, описанные выше, произошли именно в этот период его жизни. Чтобы отдохнуть от нацистской Австрии, он посетил Соединенные Штаты, где встретился и подружился с Эйнштейном.
В 1938 г. Гёдель женился на Адель Нимбурски (урожденной Поркерт), с которой познакомился в ночном клубе Der Nachtfalter в Вене одиннадцатью годами ранее. Она была на шесть лет старше и уже успела побывать замужем, к тому же его родители были против, но он поступил по-своему. Когда в 1939 г. началась Вторая мировая война, Гёдель испугался, что его могут призвать в германскую армию. По идее, слабое здоровье должно было ему помочь, но прежде его уже принимали за еврея, так кто даст гарантию, что в следующий раз его не примут за здорового человека? Он ухитрился получить американскую визу и вместе с женой отправился в США через Россию и Японию. Они благополучно прибыли туда в 1940 г. В том же году Гёдель доказал, что гипотеза о континууме Кантора вполне согласуется с обычными теоретико-множественными аксиомами для математики. Он получил работу в Институте высших исследований в Принстоне – сначала в качестве ординарного исследователя, затем на постоянной должности, а после, с 1953 г., профессора. Хотя в 1946 г. он прекратил публиковаться, исследования не оставил.
В 1948 г. Гёдель получил американское гражданство. Судя по всему, он был уверен, что обнаружил в конституции США логическую нестыковку, и пытался объяснить свою находку судье, который очень разумно не клюнул на эту наживку. Близкая дружба с Эйнштейном побудила его поработать над теорией относительности. В частности, он нашел пространство-время, в котором имеется замкнутая времениподобная кривая – математический эвфемизм для машины времени. Если нечто движется по такой кривой в пространстве и времени, его будущее плавно переходит в его прошлое. Это как находиться в Лондоне в 1900 г. |