После трудного детства (как еврей в оккупированной Франции он подвергался постоянной опасности быть арестованным нацистами и имел все шансы закончить жизнь в лагере смерти) Мандельброт сделал необычную, но весьма и весьма творческую математическую карьеру, основную часть которой он работал научным сотрудником лаборатории IBM им. Томаса Уотсона в Йорктаун-Хайтс (штат Нью-Йорк). Там он написал серию статей на самые разные темы, от частотности слов в языках до уровней паводков на реках. Затем, в приступе вдохновения, объединил массу этих разнообразных и забавных исследований в единую геометрическую концепцию – концепцию фрактала.
Традиционные в математике фигуры, такие как шар, конус или цилиндр, имеют очень простую форму. Чем ближе вы их разглядываете, тем более гладкими и плоскими они кажутся. Общий вид исчезает, а то, что остается, больше всего похоже на абсолютно однообразную равнину. Фракталы выглядят иначе, они имеют детальную структуру на любом масштабе увеличения. Он бесконечно извилист. «Облака не шары, – писал Мандельброт, – горы не конусы, береговая линия не состоит из окружностей, а кора не гладкая, да и молния движется не по прямой». Фракталы отражают те аспекты реальности, которые остаются за рамками традиционных структур математической физики. Их появление привело к фундаментальным изменениям в том, как ученые моделируют реальный мир, с конкретными приложениями в физике, астрономии, биологии, геологии, лингвистике, глобальных финансах и многих других областях. Кроме того, у фракталов имеются глубокие чисто математические особенности и прочные связи с хаотической динамикой.
Фракталы – одна из нескольких областей математики, которые, не будучи совсем уж новыми, начали бурно развиваться во второй половине XX в. и изменили взаимоотношения между математикой и ее приложениями, предложив новые методы и подходы. Корни фрактальной геометрии восходят к поиску логической строгости в математическом анализе; поиск этот привел около 1900 г. к открытию разнообразных «патологических кривых», основным назначением которых было показать, что наивные интуитивные аргументы могут быть обманчивыми. К примеру, Гильберт определил кривую, которая проходит через все без исключения точки внутри квадрата – проходит не просто вблизи от них, но строго через каждую точку. Эта кривая называется заполняющей, по очевидным причинам, и предупреждает нас об осторожности при работе с понятием измерения. Непрерывное преобразование способно увеличить размерность пространства, в данном случае с 1 до 2. Другие примеры – «снежинка» Хельге фон Коха, которая имеет бесконечную длину, но при этом ограничивает собой конечную площадь, и ковер Вацлава Серпинского – кривая, пересекающая саму себя в каждой точке.
Однако эти ранние работы остались почти незамеченными за пределами специальных сообществ и рассматривались в основном как диковинки. Чтобы некоторая предметная область «родилась», кто-то должен собрать отдельные кусочки вместе, осознать их фундаментальное единство, сформулировать требуемые понятия с достаточным обобщением – а затем выйти и «продать» свои идеи миру. У Мандельброта, которого ни в коем случае нельзя назвать математиком в традиционном смысле, хватило проницательности и упорства сделать именно это.
* * *
Бенуа родился в литовской семье ученых-евреев в Варшаве в период между двумя мировыми войнами. Его мать Белла (урожденная Лурье) была стоматологом. Отец Карл Мандельброт, не имевший формального образования, шил и продавал одежду, но в основном родственники с его стороны семьи на протяжении нескольких поколений были учеными, так что Бенуа воспитывался в академической традиции. У Карла был младший брат Шолем, позже ставший видным математиком. Мать, потерявшая в результате эпидемии одного ребенка, несколько лет не отдавала Бенуа в школу, чтобы уберечь от инфекции. |