Изменить размер шрифта - +

Закон Ципфа гласит, что частота употребления n-го слова (в ряду, упорядоченном по частоте употребления) равна частоте первого слова в этом ряду, деленной на n. Здесь 7/2 = 3,5 и 7/3 = 2,3. Последнее значение ниже наблюдаемого, но это нестрогий закон, он всего лишь позволяет количественно оценить общую тенденцию. Здесь частота n-го слова в рейтинге пропорциональна 1/n, что можно записать как n<sup>–1</sup>. Другие примеры демонстрируют аналогичные закономерности, но со степенью, не равной –1. К примеру, в 1913 г. Феликс Ауэрбах заметил, что распределение городов по размеру следует аналогичному закону, но со степенью n<sup>–1,07</sup>. В общем случае, если n-я в рейтинге величина встречается с частотой, пропорциональной n<sup>c</sup>, для некоторой постоянной c, то мы говорим о законе c-й степени.

Классическая статистика обращает мало внимания на распределения, подчиняющиеся степенному закону, и сосредоточивается в основном на нормальном распределении (знаменитой колоколовидной кривой); причин тому немало, и некоторые из них вполне резонны. Но природа зачастую пользуется не нормальным, а степенным распределением. Законы вроде закона Ципфа применимы к населению городов, числу зрителей у тех или иных наборов телепрограмм и даже к заработкам людей. Причины этого до сих пор не до конца ясны, но Мандельброт в своей диссертации сделал первые шаги к пониманию, а Вэньтянь Ли предложил статистическое объяснение: в языке, где каждая буква алфавита (плюс пробел для разделения слов) встречается в тексте с одинаковой частотой, распределение слов по частоте встречаемости подчиняется некоторому приближению к закону Ципфа. Витольд Белевич доказал, что этот принцип выполняется для множества различных статистических распределений. Собственное объяснение Ципфа состояло в том, что языки развиваются со временем так, чтобы обеспечить оптимальное понимание при минимальных усилиях (говорения и слушания), и степень –1 появляется именно поэтому.

Мандельброт публиковал статьи о распределении богатства, фондовом рынке, термодинамике, психолингвистике, длине береговых линий, турбулентности жидкости, популяционной демографии, структуре Вселенной, площади островов, статистике речных сетей, фильтровании, полимерах, броуновском движении, геофизике, случайном звуке и по другим разрозненным темам. Все это выглядело немного бессвязным. Но в 1975 г. все соединилось в одной вспышке озарения: в основе почти всех его работ лежала одна общая тема. И тема эта была геометрической.

Геометрия природных процессов не часто следует стандартным математическим моделям, в ней редко встречаются шары, конусы, цилиндры и другие гладкие поверхности. Горы изобилуют трещинами, уступами и имеют неправильную форму. Облака пушисты, в них есть вспучивания и волокнистые структуры. Деревья последовательно ветвятся, переходя от ствола к сучьям и веткам. Ветви кустов часто выглядят как множество маленьких веточек, связанных вместе противолежащими парами. Сажа под микроскопом выглядит как множество крохотных частиц с промежутками между ними. Они очень далеки от гладкой округлости шара. Природа избегает прямых линий и не слишком увлекается положениями из Евклида и текстов по математическому анализу. Мандельброт пустил в обращение название для подобных структур: фракталы. Он энергично и с большим энтузиазмом продвигал использование фракталов в науке, при моделировании многих нерегулярных природных структур.

Ключевое слово здесь «моделирование». Возможно, Земля представляется нам примерно шарообразной – эллипсоидной, если вы хотите более точного описания, – и такое представление немало помогло физикам и астрономам разобраться в таких вещах, как приливы и наклонение земной оси, но математические объекты – это лишь модели, а не сама реальность. Они отражают некоторые черты природного мира в идеализированном виде – достаточно простом, чтобы человеческий мозг способен был его анализировать.

Быстрый переход