Они отражают некоторые черты природного мира в идеализированном виде – достаточно простом, чтобы человеческий мозг способен был его анализировать. Но поверхность Земли далека от идеала: карта – не реальная местность и не должна ею быть. Карту Австралии можно сложить и положить в карман, откуда при необходимости всегда можно извлечь, но с самой Австралией невозможно проделать подобный трюк. Карта должна быть гораздо компактней территории, которую она изображает, но при этом давать об этой территории полезную информацию. Математическая сфера всегда идеально гладкая, сколько ее ни увеличивай, но реальность на атомном уровне рассыпается на квантовые частицы. Однако это не относится к гравитационному полю планеты, поэтому в данном контексте это можно и нужно игнорировать. Воду можно с успехом моделировать как бесконечно делимую среду, хотя настоящая вода становится дискретной, когда вы переходите на молекулярный уровень.
То же с фракталами. Математический фрактал не просто случайная фигура. Он имеет детальную структуру на всех масштабах увеличения. Часто – одинаковую структуру на всех масштабах. Такие формы называют самоподобными. Во фрактальной модели куста каждая ветвь состоит из меньших ветвей, которые, в свою очередь, состоят из еще более мелких ветвей, и этот процесс не имеет конца. В настоящих кустах он останавливается в лучшем случае через четыре-пять шагов. Тем не менее фрактал, как модель, лучше, чем, скажем, треугольник. Точно так же, как эллипсоид в качестве модели Земли может быть лучше, чем шар.
Мандельброт прекрасно сознавал, какую видную роль в предыстории фракталов сыграли польские математики и тот весьма абстрактный подход к анализу, геометрии и топологии, развиваемый и продвигаемый небольшим кружком математиков, многие из которых регулярно встречались в Шотландском кафе во Львове. В этот кружок входили основатель функционального анализа Стефан Банах и Станислав Улам, принимавший активное участие в Манхэттенском проекте создания атомной бомбы и предложивший, собственно, основную идею водородной бомбы. Их единомышленником являлся и Вацлав Серпинский из Варшавского университета, придумавший фигуру, которая была «одновременно канторианской и жорданианской и каждая точка которой была точкой ветвления». То есть непрерывную кривую, которая пересекает саму себя в каждой точке.
Позже Мандельброт в шутку назвал эту фигуру прокладкой из-за сходства с дырчатой прокладкой, которая устанавливается в автомобиле между головкой блока цилиндров и двигателем. Вспомним, что ковер Серпинского – представитель небольшой группы примеров, возникших в начале XX в. и известных как патологические кривые, хотя в природе, да и в математике они вовсе не патологичны – просто математикам того времени казались очень уж странными. Структуры, подобные ковру Серпинского, можно обнаружить на раковинах морских моллюсков. Так или иначе эту фигуру можно построить при помощи пошаговой процедуры на основе равностороннего треугольника. Для этого следует разделить его на четыре конгруэнтных равносторонних треугольника вполовину меньшего размера. Затем центральный треугольник – перевернутый – следует вырезать. После этого повторяем весь процесс в отношении каждого из трех оставшихся треугольников, и так до бесконечности. Ковер – это то, что получится, когда мы вырежем все перевернутые треугольники, но не их границы.
В настоящее время они считаются ранними фракталами. Мандельброт вдохновлялся ими:
Мой дядя уехал во Францию в возрасте лет примерно двадцати, этим беглецом двигала идея не политическая и не экономическая, а чисто интеллектуальная. Его отталкивала «польская математика», которую тогда Вацлав Серпинский (1882–1969) строил как воинствующе абстрактную область. По глубокой иронии, чьим работам суждено было стать для меня изобильными охотничьими угодьями, когда много позже я искал инструменты для построения фрактальной геометрии? Серпинского! Убегая от идеологии [Серпинского], мой дядя присоединился к наследникам Пуанкаре, правившим в Париже в 1920-е гг. |