Математическое понимание шансов на выигрыш давало ему заметное преимущество, и около 1564 г. Джироламо написал одну из первых книг о вероятностях, «Книгу об азартных играх», опубликованную только в 1663 г. Помогало и умение играть в шахматы – на деньги. Но, пустившись в разгул, он потерял и свою удачу, и наследство.
Тем не менее Джироламо упрямо гнул свою линию. Обладая теперь медицинским дипломом, он попытался вступить в Миланскую коллегию врачей – верный путь к выгодной профессии и благополучной жизни. На этот раз привычка откровенно высказывать свое мнение подвела его, и Кардано отказали в приеме, поэтому он стал врачом в деревне под Миланом. Средств, которые приносило это место, едва хватало на жизнь, и Джироламо женился на дочери капитана местной милиции Лючии Бандарини. Вновь отвергнутый колледжем, он вернулся к привычным занятиям – и опять промотал состояние. После того как Джироламо продал все свои пожитки, включая и драгоценности Лючии, оба они оказались в богадельне. «Я разорился! Я погиб!» – писал Джироламо. У них с Лючией родился ребенок, имевший от рождения несколько небольших дефектов, но не считавшийся по тем временам ущербным. К этому времени Фацио уже умер, и Джироламо был назначен его преемником; дела наконец-то пошли в гору. В 1539 г. даже Колледж врачей перестал противиться его вступлению. Кроме того, он придумал для себя новый способ заработка, опубликовав несколько математических книг. Одна из этих книг навсегда обеспечила ему место в рядах первопроходцев математики.
* * *
Большинство областей математики появились на свет в результате сложных и путаных исторических процессов, в которых невозможно обнаружить никакого определенного направления, – именно потому, что направление как таковое возникает тогда, когда фрагментарные идеи начинают связываться в единую логическую цепочку. Джунгли расширяются по мере того, как вы их исследуете. Не многие черты алгебры берут начало от древних греков, у которых не было эффективной нотации, то есть системы записи, даже для натуральных чисел. Придумав сокращенную форму записи для неизвестных величин, Диофант дал протоалгебре мощный толчок, но сам он был сосредоточен исключительно на решении уравнений в натуральных числах, что вело скорее к развитию теории чисел. Греческие и персидские геометры решали задачи, которые мы сегодня считаем алгебраическими, чисто геометрическими средствами. Аль-Хорезми формализовал алгебраические процессы, но не догадался ввести символьные обозначения.
Задолго до всего вышеописанного вавилоняне уже открыли первый по-настоящему важный метод алгебры – метод решения квадратных уравнений. Вопросы такого рода, как мы понимаем сегодня, открывают дорогу алгебре в той форме, какую она приобрела к XIX в., – а это основная часть того, что изучается в школьной математике. А именно определение значения (или короткого списка возможных значений) неизвестной величины из некоторого численного отношения между этой величиной и ее степенями – квадратом, кубом и т. д. То есть решение полиномиального уравнения.
Если максимальная степень неизвестного в уравнении равна двум, уравнение называется квадратным. Писцы-математики Древнего Вавилона знали, как решать подобные примеры, и учили этому школьников. В качестве доказательства у нас имеются глиняные таблички с загадочными клиновидными буквами. Самое сложное здесь – извлечь квадратный корень из нужной величины.
Сегодня, задним числом, следующий шаг представляется очевидным: кубические уравнения, в которых наряду с квадратом неизвестной величины и с ней самой фигурирует также ее куб. Одна вавилонская табличка вроде бы намекает на особый метод решения кубических уравнений, но это все, что мы знаем об открытиях вавилонян в данной области. Греческие и персидские геометрические методы с этим справлялись; самое подробное рассмотрение такой задачи принадлежит Омару Хайяму, знаменитому больше своими стихами, особенно четверостишиями рубаи. |