Предположим, к примеру, что первоначально стержень нагрет на половине своей длины и охлажден на второй половине. Тогда начальный профиль представляет собой своеобразный меандр. Меандр – это не синусоида.
Чтобы получить решения несмотря на это препятствие, Фурье использовал важное свойство своего уравнения – его линейность. То есть любые два решения этого уравнения при сложении дадут еще одно решение. Если бы он мог представить начальный профиль как линейную комбинацию синусоид, то решение представляло бы собой соответствующую комбинацию экспоненциально убывающих синусоид. Он обнаружил, что меандр можно представить в таком виде, если взять бесконечное число синусоид и сложить профили вида sin x, sin 2x, sin 3x, sin 4x и т. д. Чтобы получить точно прямоугольную форму, потребуется бесконечное число подобных слагаемых. Так, для стержня длиной 2π формула выглядит так:
Красиво, не правда ли?
Расчеты убедили Фурье в том, что если использовать наряду с синусовыми и косинусовые слагаемые, то можно представить в виде бесконечного тригонометрического ряда любой начальный температурный профиль, каким бы сложным он ни был, даже если в нем имеются разрывы непрерывности, как в меандре. Поэтому и решение своего уравнения Фурье мог записать в той же форме. Каждое слагаемое убывает со своей скоростью; чем больше циклов колебания укладывается на синусоиде или косинусоиде, тем быстрее убывает соответствующая ей составляющая. Поэтому температурный профиль меняет не только размер, но и форму. Кроме того, Фурье методом интегрирования вывел общую формулу для слагаемых своего ряда.
Работа произвела на комиссию достаточно сильное впечатление, чтобы присудить ей приз, но членов комиссии встревожило заявление Фурье о том, что его метод применим к любому начальному профилю, даже если на нем будет множество скачков других разрывов непрерывности – как на меандре, только хуже. В качестве обоснования Фурье апеллировал к физической интуиции, но математики всегда опасаются, что интуитивные выводы и представления на самом деле могут основываться на каких-то неявно принимаемых предположениях. В самом деле, ни предложенный метод, ни возникающая в связи с ним проблема не были по-настоящему новыми. Тот же вопрос уже поднимался в связи с волновым уравнением и вызвал ссору между Эйлером и Бернулли; Эйлер опубликовал те же самые интегральные формулы разложения в ряд, что и Фурье, с более простым и элегантным доказательством. Главным различием было утверждение Фурье о том, что его метод применим к любым профилям, непрерывным или с разрывами, – утверждение, на которое Эйлер не решился. Для волн этот вопрос был не настолько серьезным, потому что прерывистый профиль был бы моделью порванной скрипичной струны, которая, естественно, колебаться не стала бы вообще. Но для распределения теплоты профили вроде меандра вполне могли иметь разумную физическую интерпретацию и потому тоже являлись объектом идеализированных модельных допущений. Но в остальном фундаментальная математика в том и другом случае была одна и та же, и на тот момент задача оставалась нерешенной.
Задним числом можно сказать, что обе стороны диспута были отчасти правы. Основная проблема здесь заключается в сходимости ряда: имеет ли бесконечная сумма какое-то определенное разумное значение? Для тригонометрических рядов это довольно тонкий вопрос, осложненный необходимостью рассматривать не одну, а несколько разных интерпретаций «сходимости». Для полного ответа требовалось три ингредиента: новая теория интегрирования, разработанная Анри Лебегом; язык и строгие правила теории множеств, придуманной Георгом Кантором; и радикально новый подход, найденный Бернхардом Риманом. В результате выяснилось, что метод Фурье применим к широкому, но все же не универсальному классу начальных профилей. Физическая интуиция здесь служит хорошим ориентиром, и эти профили вполне годятся для любой разумной физической системы. |