Изменить размер шрифта - +
Вейерштрасс тогда тоже представил статью по этой теме в Берлинскую академию, но теперь, когда вышла статья Римана, Вейерштрасс был настолько ошеломлен ее новизной и глубиной, что отозвал свою статью и никогда больше ничего не публиковал в этой области. Имейте в виду, это не помешало ему указать на трудноуловимую ошибку в использовании Риманом принципа Дирихле. Дело в том, что Риман активно использовал в своей работе функцию, которая минимизировала некоторую связанную с ней величину. Это вело к важным результатам, но Риман не привел строгого доказательства того, что такая функция в принципе существует. (Из физических соображений он был убежден, что она должна существовать, но подобные рассуждения не обладают достаточной строгостью и могут привести к ошибке.) На этом этапе математики разделились на тех, кто жаждал логической строгости и потому считал это упущение серьезным, и тех, кого убедили физические аналогии и кого больше интересовало уточнение результатов. Риман, пребывавший, естественно, во втором лагере, сказал, что даже если в его логике и есть какой-то недочет, то принцип Дирихле для него был всего лишь самым удобным способом посмотреть, что происходит, и заявленные результаты в целом верны.

В каком-то смысле это был довольно обычный спор между поборниками теоретической математики и сторонниками математической физики; та же драма регулярно разыгрывается и сегодня, будь то в связи с дельта-функцией Дирака или диаграммами Фейнмана. Обе стороны были правы в соответствии со своими собственными стандартами. Мало смысла сдерживать прогресс в физике только потому, что какая-то правдоподобная и эффективная методика не может быть обоснована с полной логической строгостью. Но верно и то, что отсутствие такого обоснования – потенциальная бомба для математиков, намекающая, что в наших представлениях по этому вопросу чего-то не хватает. Ученик Вейерштрасса Герман Шварц удовлетворил математиков, отыскав другое доказательство Римановых результатов, но физики по-прежнему предпочитали нечто более интуитивное. Со временем Гильберт разобрался с проблемой существования, доказав новый вариант принципа Дирихле, одновременно строгий и подходящий для методов Римана. А пока физики продвигались вперед, чего не смогли бы сделать, если бы слишком внимательно прислушивались к возражениям математиков. Кстати говоря, попытки математиков обосновать интуитивные результаты Римана дали массу весьма значительных результатов и концепций, которые не были бы открыты, если бы математики в этом вопросе солидаризовались с физиками. Все оказались в выигрыше.

 

* * *

Работа, связанная с многообразием и кривизной, помогла Гауссу сразу же получить представление об уровне таланта и мастерства Римана, но остальное математическое сообщество разобралось в ситуации лишь после того, как он опубликовал свое исследование по абелевым интегралам. Кюммер, Карл Борхардт и Вейерштрасс озвучили свое понимание, выдвинув в 1859 г. Римана на выборах в Берлинскую академию. Одним из заданий, которые ставились перед новыми членами Академии, было представление отчета о своей текущей работе, и Риман не ударил в грязь лицом. Он вновь сменил курс, и представленный им отчет был озаглавлен «О числе простых чисел, не превышающих заданной величины». В этой работе он предложил гипотезу, теперь носящую его имя, – гипотезу Римана, в комплексном анализе, связанную со статистическим распределением простых чисел. В настоящее время это самая знаменитая нерешенная задача во всей математике.

Простые числа занимают в математике центральное место, но во многих отношениях они просто выводят из себя. Они обладают невероятно важными свойствами, но демонстрируют замечательное отсутствие закономерностей. Глядя на список простых чисел, выстроенных последовательно, трудно предсказать следующее простое число (исключая то, что все простые после 2 нечетные и не должны делиться на маленькие простые числа, такие как 3, 5, 7).

Быстрый переход