Изменить размер шрифта - +

Только тысячная доля информации, приходящей в наш мозг извне, достигает сознания. Все остальное, однако, не исчезает, а хранится в подсознании и в определенный момент может в виде смутных или вполне определенных воспоминаний, неясных, мимолетных или четких, ярких образов появляться в сознании.

Найти ключи к тайникам нашей памяти, научиться управлять памятью, совершенствовать ее — трудно найти более заманчивую, более чудесную задачу.

Природой памяти, механизмами памяти наука интересуется давно, но особенно острой эта проблема стала сейчас в связи с бурным развитием науки и техники. Обилие новой информации, которую надо усвоить, сложнейшая техника, которой надо уметь управлять, заставляют нас по-новому взглянуть на себя, а главное — выяснить, на что мы способны, располагаем ли мы какими-либо резервами и в чем.

Обсуждаются, исследуются, проверяются самые различные гипотезы, ставятся эксперименты с использованием новейшей аппаратуры и методик. Уже установлено, что в сложном процессе запоминания принимают участие некоторые отделы коры головного мозга.

Были поставлены, например, такие эксперименты. Электрическим током раздражали височную часть больших полушарий коры головного мозга. При этом у человека появлялись яркие воспоминания давно забытого. Позднее выяснилось, что в процессах запоминания информации, идущей из внешнего мира, важную роль играет так называемая лимбическая система — часть мозга, прилегающая к переднему концу мозгового ствола. Стоит ее нарушить, и у человека полностью исчезает способность что-либо запомнить. Но старые знания остаются нетронутыми.

А сама природа памяти? На этот счет существует несколько гипотез. Когда в 1920 году были открыты биотоки мозга, ученые выдвинули гипотезу «электрической» памяти. Суть ее коротко такова: запоминание происходит благодаря устойчивой циркуляции электрических импульсов в так называемом замкнутом контуре, состоящем из нервных клеток и волокон.

Позднее появилась гипотеза «нуклеинового кодирования», основа которой заключается в следующем: биоэлектрические сигналы, поставляющие в мозг информацию, вызывают в нервных клетках определенные химические изменения, при этом непосредственными хранителями памяти служат некоторые химические соединения.

Сначала предпочтение отдавалось РНК — рибонуклеиновой кислоте. Потом она была заменена ДНК — знаменитой дезоксирибонуклеиновой кислотой. Это вещество, как известно, играет главную роль в механизме наследственности, то есть, другими словами, она является хранителем нашей генетической памяти.

Если это так, то, может быть, ДНК и другие нуклеиновые кислоты имеют отношение и к повседневной памяти? Ученые ставят опыты и приходят к выводу: да, возможно, это так и есть.

Американские исследователи Корнинг и Джон изучали поведение червей-планариев. У этих существ завидная способность к восстановлению. Разрезанные надвое, натрое, они не погибают. Каждая часть организма вырастает в целого червя. Ученые задались вопросом, сохраняют ли разрезанные половинки планария ранее накопленный опыт.

Червя раздражали электрическим током. Спустя некоторое время у него вырабатывался оборонительный условный рефлекс. Затем червя разрезали пополам. И выросшие половинки сохраняли ранее приобретенный рефлекс.

Исследователи усложнили опыт: половинки планария помещали в воду, где находилось вещество, разрушающее РНК. Картина изменилась: червяк, вырастающий из головной части своего «родителя», сохранял его опыт, а задняя часть все забывала. Вывод напрашивается сам собой: РНК имеет какое-то отношение к памяти.

Проводились опыты и с высокоорганизованными животными. Обучая крыс различным формам поведения, шведский ученый Хиден открыл, что в нервных клетках, принимающих участие в выработке условных рефлексов, заметно увеличивается содержание РНК.

Крысу учили ходить по проволоке, и у нее в клетках, ведающих работой вестибулярного аппарата, увеличивалось содержание РНК.

Быстрый переход