Достигнув вновь уровня поверхности земли, он набирает ту же скорость, с которой вылетал вверх (пренебрежем пока сопротивлением воздуха), только направление его движения теперь будет противоположным.
Он снова движется со скоростью 49 метров в секунду и снова обладает кинетической энергией в 12 000 джоулей. К нему вернулась вся кинетическая энергия, которой он обладал вначале. Так где же была эта энергия в верхней точке полета?
Чтобы ответить на этот вопрос, придется представить, что предметы могут обладать энергией просто в силу своего положения. Камень, лежащий на вершине скалы, казалось бы, никакой энергией не обладает. Он может вечность пролежать на одном месте, не выполняя никакой работы. Если же его столкнуть со скалы, он наберет по мере падения скорость (а значит — и кинетическую энергию) и может убить человека. Энергия, происходящая из положения предмета, именуется «потенциальной энергией» (ее можно обозначить как Е), поскольку никак не проявляется, пока ей не предоставят для того условия, то есть является не действительным свойством предмета, а лишь потенциальным.
По мере подъема вверх железный шар (или камень, в общем, любой предмет) теряет кинетическую энергию, приобретая взамен потенциальную. В наивысшей точке подъема вся кинетическая энергия тела переводится в потенциальную. Затем, по мере падения, вся потенциальная энергия постепенно переходит обратно в кинетическую, и в момент приземления вся энергия тела снова приходит в кинетическую форму. На самом деле, если взять любую промежуточную точку на траектории полета шара, то окажется, что, падая с этой высоты, шар наберет к моменту приземления столько же кинетической энергии, сколько он потерял, долетая до этой высоты снизу. То есть в любой точке полета общее количество кинетической и потенциальной энергии тела остается неизменным.
В общем, энергия не появляется ниоткуда и не исчезает никуда. Она все время присутствует в неизменном объеме, переходя из одной формы в другую. Энергия сохраняется. Если объединить понятия кинетической и потенциальной энергий в едином понятии «механической энергии» (Е<sub>m</sub>), то мы можем говорить о законе сохранения механической энергии.
Перед нами — пример постоянства в природе, который в принципе невозможно было заметить и оценить, пока человек не взялся за точное измерение явлений.
Конечно, это не значит, что прямо так уж вся потенциальная энергия переходит в кинетическую, когда предмет падает на поверхность земли. Может, он больше и не упадет и не проделает никакой работы, но, если выкопать шахту глубиной в тысячу метров, предмет, казалось бы исчерпавший всю потенциальную энергию падения, вдруг обретет способность падать дальше и проделать таким образом еще какой-то объем работы. Эта дополнительная потенциальная энергия — она что, взялась ниоткуда?
Нет, это вопрос точки отсчета. Находящийся на вершине скалы камень обладает большой потенциальной энергией относительно поверхности Земли; но куда большей потенциальной энергией он обладает относительно центра Земли, ведь если бы существовала достаточно глубокая шахта, то после достижения поверхности Земли этот камень мог бы пролететь еще шесть с половиной тысяч километров. И, даже находясь в самом центре Земли, предмет все равно будет обладать потенциальной энергией относительно Солнца, а сам центр Солнца обладает потенциальной энергией относительно центра Галактики. Нигде во всей Вселенной потенциальная энергия предметов не равна полному нулю, и это отсутствие «абсолютных рамок относительности» и является одним из основных положений теории относительности Эйнштейна.
Однако для нас отсутствие абсолютной системы координат не имеет значения. Интерес для физиков, таким образом, представляют не абсолютные значения, а разница потенциальных. То есть предмет на вершине километровой скалы обладает большей потенциальной энергией, нежели такой же предмет, находящийся у подножия этой скалы, и эта разница остается неизменной для нас, находящихся на планете Земля. |