Притом что к существованию Λ-члена космологи относились скептически, они рассматривали модели как без космологической постоянной, так и с ее учетом. Долгое время первый вариант хорошо описывал все астрономические данные, но потом ситуация изменилась. Астрономические наблюдения последних десятилетий подтвердили существование космологической постоянной и позволили измерить ее величину Λ = 1,19×10−52 м−2.
Космологическую постоянную Λ можно рассматривать как некоторый экзотический вид среды с постоянной плотностью энергии εΛ, давлением pΛ и плотностью вещества ρΛ, которые не изменяются в ходе космологического расширения. Причиной такого постоянства является отрицательная работа против отрицательной силы давления, которая сохраняет постоянство плотности энергии Вселенной ε = ρc2. И действительно, давление, создаваемое космологической постоянной, отрицательно и характеризуется значением
Это означает, что космологическая постоянная имеет уравнение состояния pΛ = – εΛ, что является частным случаем более общего уравнения (2.33) р = wε с w = –1.
Кроме того, такое уравнение состояния обеспечивает антигравитацию, или гравитационное отталкивание от такой среды. Мы наблюдаем его в виде ускоренного расширения Вселенной с отрицательным параметром замедления. В ранней Вселенной космологическая постоянная была такой же, как и сейчас, и это вряд ли повлияло на эволюцию Вселенной.
В ОТО существует решение, называемое метрикой де Ситтера или решением де Ситтера, описывающее однородное изотропное пространство-время без материи, но с космологической постоянной. Мы опишем его в разделе A.1. Оно имеет интересное свойство. Плотность среды, имитирующей космологическую постоянную, остается все время постоянной: ρΛ = const. Вселенная де Ситтера расширяется очень быстро, и расстояние между любыми двумя пробными частицами, помещенными в нее, будет возрастать. В некотором роде это похоже на Страну чудес Льюиса Кэрролла, где вы должны бежать так быстро, как вы можете, чтобы оставаться на месте.
Честно говоря, мы не можем быть уверены, что основная компонента нашей Вселенной точно описывается уравнением состояния p = –ε. Реальное уравнение состояния может немного отличаться. Поэтому космологи предпочитают использовать более общее название «темная энергия». Ее плотность и давление могут изменяться в ходе космологического расширения, но не очень сильно по современным оценкам. Каждый год новые астрономические наблюдения накладывают все более строгие ограничения на уравнения состояния темной энергии, однако частный случай космологической постоянной до сих пор удовлетворяет этим ограничениям.
В любом случае темная энергия является источником антигравитации, которая обеспечивает наблюдаемое астрономами ускоренное расширение Вселенной.
Введение космологической константы изменило применимость трех решений Фридмана. Теперь одного параметра плотности материи недостаточно для определения окончательной судьбы Вселенной. Например, дополнительная сила гравитационного отталкивания, которую обеспечивает космологическая постоянная, допускает существование вечно расширяющейся замкнутой Вселенной.
2.8.2. Стандартная космологическая модель
Космологи используют выражение «стандартная космологическая модель» для названия модели, которая наиболее адекватно описывает эволюцию нашей Вселенной. Но в разное время они подразумевали при этом разные модели. Полвека назад это были три модели Фридмана с некоторыми дополнительными деталями, разработанными Георгием Гамовым и его коллегами. Теперь под этими словами мы подразумеваем расширяющуюся Вселенную с темной энергией, или космологической постоянной, и практически пылевидной материей, которая включает в себя как обычное вещество, так и какой-то таинственный вид материи, называемый темной материей. |