Изменить размер шрифта - +
Ее скорость уменьшается, стремясь к положительному предельному значению v = √A. Вселенная вечно расширяется, начиная с Большого взрыва, и без Большого хруста/хрустя. Этот случай соответствует открытой модели Фридмана. При А = 0 имеем ρ = ρкрит и в любой момент вечного расширения частица имеет нулевую энергию и может достигать бесконечности, но с нулевой предельной скоростью. Это плоская модель Фридмана. Если А < 0, то всегда ρ > ρкрит и энергия частицы отрицательна. Она не может достичь бесконечности. Рано или поздно расширение Вселенной останавливается и сменяется сжатием. Это замкнутая модель Фридмана.

Как видим, все три версии космологической модели Фридмана – открытая, закрытая и плоская – можно объяснить столь же легко, как движение камня, брошенного вверх. Чтобы улететь бесконечно далеко, скорость камня должна быть равна второй космической скорости (это соответствует плоской модели) или превышать ее (открытая модель). Камень, брошенный медленнее, сначала летит вверх, а затем начинает падать вниз (закрытая модель). Тем не менее в рамках нерелятивистской космологии мы не можем определить, что замкнутая, плоская и открытая модели имеют соответственно положительную, нулевую и отрицательную пространственную кривизну. Это возможно только с помощью релятивистской космологии, основанной на ОТО.

Подставляя уравнение (2.8) в уравнение (2.10), мы получаем уравнение Фридмана для Вселенной, заполненной пылевидной материей, без космологической постоянной и зависимости H(r):

Решив их, мы получаем зависимости r(t) и H(t):

Вместе с зависимостью ρ(t), определяемой формулой (2.8), они завершают описание трех возможных сценариев космологической эволюции в рамках нерелятивистской космологии.

 

2.7.2. Исследование решений

 

Рассмотрим смысл и свойства решений Фридмана. Прежде всего перейдем от констант А и В к величинам с более четким физическим смыслом. Выберем опорный момент времени в системе наблюдателя, неподвижного по отношению к окружающей среде. Назовем этот момент текущей эпохой или «сейчас». Снабдим все значения, относящиеся к этому моменту, индексом 0. Мы уже делали это раньше, когда ввели параметр Хаббла H0 – текущее значение зависящей от времени постоянной Хаббла H. Следующей используемой величиной будет так называемый параметр плотности материи Ωm = ρ/ρкрит. Как числитель, так и знаменатель этого отношения зависят от времени согласно формулам (2.8) и (2.11). Следовательно, параметр плотности вещества тоже зависит от времени. Обозначим его текущее значение Ωm0. Нам также понадобится текущее значение радиуса сферы r0, играющее роль текущего значения масштабного фактора.

Применив формулы (2.4) и (2.7) к текущей эпохе, мы получаем:

B = ρ0r03 = Ωm0 ρc 0 r03 = 3H02Ωm0 r03/8πG. (2.14)

Из (2.10) и (2.11) определим

Из уравнения (2.15) мы еще раз убеждаемся, что случай Ωm > 1 соответствует А < 0, т. е. закрытой модели, в которой Вселенная в конечном итоге опять собирается в точку, случай Ωm < 1 соответствует открытой модели с А > 0, а Ωm= 1 соответствует плоской модели с А = 0.

Подставляя уравнения (2.14) и (2.15) в уравнение (2.12), мы получаем:

Здесь мы ввели относительный масштабный фактор u = r/r0, который может быть легко преобразован при r < r0 в красное смещение z простым соотношением 1/u = 1 + z.

Уравнение (2.16) полностью описывает зависимость H(u) или H(z). В современную эпоху u = 1, и оно выполняется автоматически. Проанализируем зависимость постоянной Хаббла от относительного масштабного фактора или красного смещения z.

Быстрый переход